• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

建筑物下珊瑚砂地基动力响应振动台模型试验研究

丁选明, 吴琪, 刘汉龙, 陈志雄, 陈育民, 彭宇

丁选明, 吴琪, 刘汉龙, 陈志雄, 陈育民, 彭宇. 建筑物下珊瑚砂地基动力响应振动台模型试验研究[J]. 岩土工程学报, 2019, 41(8): 1408-1417. DOI: 10.11779/CJGE201908004
引用本文: 丁选明, 吴琪, 刘汉龙, 陈志雄, 陈育民, 彭宇. 建筑物下珊瑚砂地基动力响应振动台模型试验研究[J]. 岩土工程学报, 2019, 41(8): 1408-1417. DOI: 10.11779/CJGE201908004
DING Xuan-ming, WU Qi, LIU Han-long, CHEN Zhi-xiong, CHEN Yu-min, PENG Yu. Shaking table tests on dynamic response of coral sand foundation under buildings[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1408-1417. DOI: 10.11779/CJGE201908004
Citation: DING Xuan-ming, WU Qi, LIU Han-long, CHEN Zhi-xiong, CHEN Yu-min, PENG Yu. Shaking table tests on dynamic response of coral sand foundation under buildings[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1408-1417. DOI: 10.11779/CJGE201908004

建筑物下珊瑚砂地基动力响应振动台模型试验研究  English Version

基金项目: 国家自然科学基金项目(51622803,41831282,51878103)
详细信息
    作者简介:

    丁选明(1980— ),男,博士,教授,主要从事土力学与地基基础工程、土动力学与工程振动、环境岩土工程等方面的教学和科研工作。E-mail: dxmhhu@163.com。

  • 中图分类号: TU43

Shaking table tests on dynamic response of coral sand foundation under buildings

  • 摘要: 随着岛礁建设的快速发展,珊瑚砂地基抗震安全尤为重要。为揭示珊瑚砂地基和建筑物地震响应特性,开展了地震动作用下不同密实度的可液化珊瑚砂地基上3层框架结构的振动台模型试验,对孔隙水压力、加速度、位移和动应变等动力响应进行测试和分析,并与可液化石英砂场地进行对比。结果表明,相同相对密实度和相近颗粒级配下,珊瑚砂场地相比石英砂场地更难以液化。两种砂场地液化程度均随埋深增大而减小,随与建筑物距离增大而增大。液化后的珊瑚砂场地模型地基相比石英砂场地仍然具有一定的剪切传递能力,这种差异随地基埋深的增加逐渐减弱。珊瑚砂场地液化后建筑物倾斜度、最终沉降和立柱动应变相比石英砂场地均较小。不同相对密实度的珊瑚砂与石英砂场地液化性能存在一定的差异。
    Abstract: With the rapid development of coral island construction, the seismic safety of coral sand foundation is particularly important. To reveal the seismic response characteristics of coral sand foundation and buildings, the shaking table tests on a three-story frame structure on liquefiable coral sand are carried out. The pore pressure, acceleration, displacement and strain are tested for different relative densities of model foundation. The test results are compared with those of the liquefiable quartz sand. The results show that the coral sand is more difficult to be liquefied than the quartz sand under the same relative density and similar particle-size distribution. The liquefaction degree of the two kinds of sand decreases with the increase of foundation depth, and increases with the distance from the buildings. Compared with the quartz sand, the liquefied coral sand model foundation still has some shear transfer capacity, while this difference gradually weakens with the increase of foundation depth. The inclination, final settlement and column strain of the model buildings on the coral sand foundation are smaller than those on the quartz sand foundation. The liquefaction properties of coral sand with different relative densities are different.
  • [1] 刘崇权. 钙质土土力学理论及其工程应用[D]. 武汉: 中国科学院武汉岩土力学研究所, 1999.
    (LIU Chong-quan.The theory of calcareous soils mechanics and its application in engineering[D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 1999. (in Chinese))
    [2] 朱长歧, 陈海洋, 孟庆山, 等. 钙质砂颗粒内孔隙的结构特征分析[J]. 岩土力学, 2014, 33(7): 1831-1836.
    (ZHU Chang-qi, CHEN Hai-yang, MENG Qing-shan, et al.Microscopic characterization of intra-pore structures of calcareous sands[J]. Rock and Soil Mechanics, 2014, 33(7): 1831-1836. (in Chinese))
    [3] 黄宏翔, 陈育民, 王建平, 等. 钙质砂抗剪强度特性的环剪试验[J]. 岩土力学, 2018, 39(6): 2082-2088.
    (HUANG Hong-xiang, CHEN Yu-min, WANG Jian-ping, et al.Ring shear tests on shear strength of calcareous sand[J]. Rock and Soil Mechanics, 2018, 39(6): 2082-2088. (in Chinese))
    [4] 刘崇权, 汪稔. 钙质砂物理力学性质初探[J]. 岩土力学, 1998, 19(1): 32-37.
    (LIU Chong-quan, WANG Ren.Preliminary study on physical and mechanical properties of calcareous sand[J]. Rock and Soil Mechanics, 1998, 19(1): 32-39. (in Chinese))
    [5] 任玉宾, 王胤, 杨庆. 颗粒级配与形状对钙质砂渗透性的影响[J]. 岩土力学, 2018, 39(2): 491-497.
    (REN Yu-bin, WANG Yin, YANG Qing.Effects of particle size distribution and shape on permeability of calcareous sand[J] . Rock and Soil Mechanics, 2018, 39(2): 491-497. (in Chinese))
    [6] 刘汉龙, 胡鼎, 肖杨, 等. 钙质砂动力液化特性的试验研究[J]. 防灾减灾工程学报, 2015, 35(6): 707-711.
    (LIU Han-long, HU Ding, XIAO Yang, et al.Test study on dynamic liquefaction characteristics of calcareous sand[J]. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(6): 707-711. (in Chinese))
    [7] 刘汉龙,肖鹏, 肖杨, 等. MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40(1): 38-45.
    (LIU Han-long, XIAO Peng, XIAO Yang, et al.Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 38-45. (in Chinese))
    [8] 徐学勇, 汪稔, 王新志, 等. 饱和钙质砂爆炸响应动力特性试验研究[J]. 岩土力学, 2012, 33(10): 402-414.
    (XU Xue-yong, WANG Ren, WANG Xin-zhi et al. Experimental study of dynamic behavior of saturated calcareous sand due to explosion[J]. Rock and Soil Mechanics , 2012, 33(10): 402-414. (in Chinese))
    [9] 虞海珍, 汪稔. 钙质砂动强度试验研究[J]. 岩土力学, 1999, 20(4): 6-11.
    (YU Hai-zhen, WANG Ren.Experimental study on dynamic strength of calcareous sand[J]. Rock and Soil Mechanics, 1999, 20(4): 6-11. (in Chinese))
    [10] SANDOVAL, PANDO E A, MIGUEL A. Experimental assessment of the liquefaction resistance of calcareous biogenous sands[J]. Earth Sciences Research Journal, 2012, 16(16): 55-63.
    [11] TSUKAMOTO Y, ISHIHARA K, SAWADA S, et al.Settlement of rigid circular foundations during seismic shaking in shaking table tests[J]. International Journal of Geomechanics, 2012, 12(4): 462-470.
    [12] DASHTI S, BRAY J D, PESTANA J M, et al.Centrifuge testing to evaluate and mitigate liquefaction-induced building settlement mechanisms[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(7): 918-929.
    [13] 陈文化, 门福录, 景立平, 等. 有建筑物存在的饱和砂土地基液化振动台模拟实验研究[J]. 地震工程与工程振动, 1998, 18(4): 54-60.
    (CHEN Wen-hua, MEN Fu-lu, JING Li-ping, et al.Shaking table test study of liquefaction of building subsoils[J]. Earthquake Engineering and Engineering Vibration, 1998, 18(4) : 54-60. (in Chinese))
    [14] 唐亮, 凌贤长, 徐鹏举, 等. 可液化场地桥梁群桩基础地震响应振动台试验研究[J]. 岩土工程学报, 2010, 32(5): 672-680.
    (TANG Liang, LING Xian-zhang, XU Peng-ju, et al.Shaking table test on seismic response of pile groups of bridges in liquefiable ground[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5): 672-680. (in Chinese))
    [15] 阙泽利, 李哲瑞, 张贝贝, 等. 明甪直天王殿松木斗拱振动台试验研究[J]. 土木建筑与环境工程, 2015, 37(3): 26-34.
    (QUE Ze-li, LI Zhe-rui, ZHANG Bei-bei, et al.Experimental analysis on shaking table tests of Dougong in Tianwang Hall, Luzhi,Ming dynasty[J]. Journal of Civil Architectural and Environmental Engineering, 2015, 37(3): 26-34. (in Chinese))
    [16] 陈苏, 陈国兴, 戚承志, 等. 可液化场地上三拱立柱式地铁地下车站结构地震反应特性振动台试验研究[J]. 岩土力学, 2015, 36(7): 1899-1914.
    (CHEN Su, CHEN Guo-xing, QI Cheng-zhi, et al.A shaking table-based experimental study of seismic response of three-arch type's underground subway station in liquefiable ground[J]. Rock and Soil Mechanics, 2015, 36(7): 1899-1914. (in Chinese))
    [17] 胡进军, 李天男, 谢礼立, 等. 脉冲型地震动作用下典型珊瑚岛礁的场地放大研究[J]. 世界地震工程, 2017, 33(4): 1-10.
    (HU Jin-jun, LI Tian-nan, XIE Li-li, et al.Seismic response analysis of coral reef under pulse-like ground motions[J]. World Earthquake Engineering, 2017, 33(4): 1-10. (in Chinese))
    [18] 胡进军, 徐长琦, 谢礼立, 等. 南海岛礁场地地震稳定性研究中的关键问题探讨[J]. 地震工程学报, 2018, 40(2): 279-287.
    (HU Jin-jun, XU Chang-qi, XIE Li-li, et al.Key issues in seismic stability analysis of reef sites in South China Sea[J]. China Earthquake Engineering Journal, 2018, 40(2): 279-287. (in Chinese))
    [19] SHI T, CHENG S.Dynamic similitude law design of shaking table model test for high-rise steel structures[C]// 5th International Conference on Advances in Experimental Structural Engineering. Taipei, 2013: 5-9.
    [20] SUSUMU I.Similitude for shaking table test on soil-structure-fluid model 1g gravitational field[R]. Yokosuka: The Port and Harbour Reasearch Institute, Ministry of Transport, 1988.
    [21] 邵一凡, 赖正聪, 潘文, 等. 考虑三维地震动作用下振动台试验隔震层简化[J]. 土木建筑与环境工程, 2017, 39(2): 65-74.
    (SHAO Yi-fan, LAI Zheng-cong, PAN Wen, et al.Simplified method of isolation layer in shaking table test considered three-dimensional seismic effect[J]. Journal of Civil Architectural and Environmental Engineering, 2017, 39(2): 65-74. (in Chinese))
    [22] 马险峰, 孔令刚, 方薇, 等. 砂雨法试样制备平行试验研究[J]. 岩土工程学报, 2014, 36(10): 1791-1801.
    (MA Xian-Feng, KONG Ling-gang, FANG Wei, et al.Parallel tests on preparation of samples with sand pourer[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1791-1801.
    [23] 陈跃庆. 结构-地基动力相互作用体系振动台试验研究[D]. 上海: 同济大学, 2001.
    (CHEN Yue-qing.Shaking table test on dynamic interaction system of structure and foundation [D]. Shanghai: Tongji University, 2001. (in Chinese))
    [24] AGAIBY S, SALEM M, MAMLOUK H E.Liquefaction susceptibility of loose calcareous sand of northern coast in Egypt La susceptibilité à la liquéfaction du sable calcaire lâche de la côte nord en Égypte[C]// International Conference on Soil Mechanics and Geotechnical Engineering. Paris, 2013: 1463-1466.
  • 期刊类型引用(11)

    1. 吴杨,吴毅航,马林建,崔杰,刘建坤,戴北冰. 南海岛礁珊瑚砂砾混合料动力特性试验研究. 岩土工程学报. 2024(01): 63-71 . 本站查看
    2. 赵守全,窦顺,周垣,吴红刚,朱兆荣. 螺纹桩加固风积沙地基液化特征试验研究. 铁道工程学报. 2024(03): 7-16 . 百度学术
    3. 王义德,汪云龙,刘荟达,张思宇,袁晓铭. 控制饱和度的珊瑚砂振动台液化模型试验研究. 地震工程与工程振动. 2024(06): 117-124 . 百度学术
    4. 万佳怡,孔德琼,苏思杨,彭宇,朱斌. 南海钙质砂微观构造三维图像分析与表征. 中南大学学报(自然科学版). 2023(01): 220-228 . 百度学术
    5. 朱新华,孙智文,陶善军,马林伟,马本俊,刘雪芹,赵杰臣. 基于多线程通信的岛礁区海底工程环境安全监测系统研究. 地球物理学进展. 2023(05): 2360-2372 . 百度学术
    6. 段志刚,王建平,赵津桥,丁选明. 振冲密实加固珊瑚砂地基地震响应振动台模型试验研究. 岩土工程技术. 2023(06): 720-724 . 百度学术
    7. 杨鸿,肖潇. 不同比例地震波作用下桩及自由场土体的响应规律. 工业建筑. 2023(10): 112-118 . 百度学术
    8. 陈志雄,李康银,王成龙,丁选明,蒋雪峰,陈育民. 液化侧向扩展场地刚性排水管桩群桩振动台试验研究. 工程力学. 2022(09): 141-152 . 百度学术
    9. 陈文龙,马建林,王吉,王蒙婷. 地震作用下饱和砂土中斜桩基础动力特性振动台试验研究. 铁道科学与工程学报. 2021(05): 1131-1142 . 百度学术
    10. 张钰,丁选明,彭宇,蒋春勇. 珊瑚碎屑颗粒内孔隙特性微观试验研究. 防灾减灾工程学报. 2021(03): 497-503 . 百度学术
    11. 刘松玉,周建,章定文,丁选明,雷华阳. 地基处理技术进展. 土木工程学报. 2020(04): 93-110 . 百度学术

    其他类型引用(18)

计量
  • 文章访问数:  340
  • HTML全文浏览量:  9
  • PDF下载量:  192
  • 被引次数: 29
出版历程
  • 收稿日期:  2018-10-10
  • 发布日期:  2019-08-24

目录

    /

    返回文章
    返回