• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

含水率变化下压实路基土动态回弹模量试验研究与预估模型

刘维正, 曾奕珺, 姚永胜, 张军辉

刘维正, 曾奕珺, 姚永胜, 张军辉. 含水率变化下压实路基土动态回弹模量试验研究与预估模型[J]. 岩土工程学报, 2019, 41(1): 175-183. DOI: 10.11779/CJGE201901020
引用本文: 刘维正, 曾奕珺, 姚永胜, 张军辉. 含水率变化下压实路基土动态回弹模量试验研究与预估模型[J]. 岩土工程学报, 2019, 41(1): 175-183. DOI: 10.11779/CJGE201901020
LIU Wei-zheng, ZENG Yi-jun, YAO Yong-sheng, ZHANG Jun-hui. Experimental study and prediction model of dynamic resilient modulus of compacted subgrade soils subjected to moisture variation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 175-183. DOI: 10.11779/CJGE201901020
Citation: LIU Wei-zheng, ZENG Yi-jun, YAO Yong-sheng, ZHANG Jun-hui. Experimental study and prediction model of dynamic resilient modulus of compacted subgrade soils subjected to moisture variation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 175-183. DOI: 10.11779/CJGE201901020

含水率变化下压实路基土动态回弹模量试验研究与预估模型  English Version

基金项目: 国家自然科学基金项目(51478054;512085172);湖南省自然科学基金优秀青年基金项目(2018JJ1026)
详细信息
    作者简介:

    刘维正(1982- ),男,湖南邵阳人,博士,副教授,从事特殊土路基稳定与加固方面的研究工作。E-mail: liuwz2011@csu.edu.cn。

    通讯作者:

    姚永胜,E-mail:yaoyongsheng23@163.com

  • 中图分类号: TU471

Experimental study and prediction model of dynamic resilient modulus of compacted subgrade soils subjected to moisture variation

  • 摘要: 路基土动态回弹模量MR是路面设计和使用性能评价采用的关键参数,运营期间受含水率变化影响显著。以压实红黏土为研究对象,制备了6个不同含水率和3种不同压实度的试样,采用滤纸法测试了不同状态下的基质吸力,并通过动三轴试验研究了含水率、压实度、动偏应力和围压对动态回弹模量的影响。试验结果表明:MR随压实度、围压的增大而增大,随动偏应力增大呈非线性减小;MR随含水率增大急剧降低,从最佳含水率增加4.5%时,不同压实度下MR均降低约50%,动偏应力和压实度对MR的影响随含水率增大逐渐减弱;MR随含水率和饱和度的变化规律与土性显著相关,而不同土样的MR随基质吸力变化趋势基本一致。进而引入基质吸力,建立了综合考虑含水率和应力水平影响的压实路基土MR预估模型,通过本文和文献试验数据证实了该模型的适用性,并基于13种土样的试验结果建立了模型参数与物性指标之间的经验关系。
    Abstract: The dynamic resilient modulus (MR) of subgrade soils is the key parameter used in pavement design and performance evaluation, and is significantly affected by variation of moisture content during operation. The compacted lateritic soil is used, and the test specimens are prepared using six different moisture contents and three degrees of compaction. The repeated loading triaxial tests are conducted to investigate the effects of moisture content, degree of compaction, dynamic deviator stress and confining pressure on dynamic resilient modulus, and the soil suctions of different specimens are measured using the contact filter paper method right after cyclic loading tests. The test results indicate that MR increases with the increasing confining pressure and degree of compaction, and decreases nonlinearly with the increasing dynamic deviator stress. The values of MR decrease greatly with the increasing moisture content, as moisture content increases by 4.5% from the optimum moisture content, they decrease to about 50% of the initial values, and the influences of dynamic deviator stress and compactness on MR decrease with the increasing moisture content. In addition, the relationships for both MR - moisture content and MR - degree of saturation are highly soil type-dependent, while the variation of MR with soil suction is similar for different soils. Thus by incorporating the soil suction into confining stress, a new prediction model for the resilient modulus taking into account both the stress state and the moisture content is proposed. The suitability of the proposed model is validated through the experimental data from this study and the existing literatures. Then the empirical relationships between model parameters and physical properties of soils are developed based on the statistical regression analysis performed on 13 different soils, and a good agreement between the measured and predicted values of MR obtained using the regression model parameters is found. This study may provide a simple and reliable method for
  • [1] SEED H B, CHAN C K, LEE C E.Resilience characteristics of subgrade soils and their relation to fatigue failures in asphalt pavements[C]// Proceedings of the International Conference on the Structural Design of Asphalt Pavements. Michigan, 1962: 611-636.
    [2] National Cooperative Highway Research Program (NCHRP). Development of the 2002 guide for the design of new and rehabilitated pavement structures[R]. Washington, D C: NCHRP Transportation Research Board, 2004.
    [3] JTG D50—2017公路沥青路面设计规范[S]. 2017.
    (JTG D50—2017 Specification for design of highway asphalt pavement[S]. 2017. (in Chinese))
    [4] NGUYEN Q, FREDLUND D G, SAMARASEKERA L, et al.Seasonal pattern of matric suctions in highway subgrades[J]. Canadian Geotechnical Journal, 2010, 47(3): 267-280.
    [5] 钱劲松, 王朋, 凌建明, 等. 潮湿多雨地区高速公路路基湿度的实测特征[J]. 同济大学学报(自然科学版), 2013, 41(12): 1812-1817.
    (QIAN Jin-song, WANG Peng, LING Jian-ming, et al.In-situ investigation of subgrade moisture of expressway in humid zone[J]. Journal of Tongji University (Natural Science), 2013, 41(12): 1812-1817. (in Chinese))
    [6] DRUMM E C, REEVES J S, MADGETT M R, et al.Subgrade resilient modulus correction for saturation effects[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(7): 663-670.
    [7] LIANG R Y, RABAB’AH S, KHASAWNEH M. Predicting moisture-dependent resilient modulus of cohesive soils using soil suction concept[J]. Journal Transportation Engineering, 2008, 134(1): 34-40.
    [8] SALOUR F.Moisture influence on structural behaviour of pavements: field and laboratory investigations[D]. Stockholm: KTH Royal Institute of Technology, 2015.
    [9] MEHROTRA A, ABU-FARSAKH M, GASPARD K.Development of subgrade Mr constitutive models based on physical soil properties[J]. Road Materials and Pavement, 2018, 19(1): 56-70.
    [10] WITCZAK M W, UZAN J.The universal airport pavement design system. Report I of V: granular material characterization[R]. Maryland: University of Maryland, 1988.
    [11] LEKARP F, ISACSSON U, DAWSON A.State of the art I: resilient response of unbound aggregates[J]. Journal of Transportation Engineering, 2000, 126(1): 66-75.
    [12] LI D, SELIG E T.Resilient modulus for fine-grained subgrade soils[J]. Journal of Geotechnical Engineering, 1994, 120(6): 939-957.
    [13] KHOURY N, BROOKS R, BOENI S Y, et al.Variation of resilient modulus, strength, and modulus of elasticity of stabilized soils with postcompaction moisture contents[J]. Journal of Materials in Civil Engineering, 2013, 25(2): 160-166.
    [14] HEATH A C, PESTANA J M, HARVEY J T, et al.Normalizing behavior of unsaturated granular pavement materials[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(9): 896-904.
    [15] NG C W W, ZHOU C, YUAN Q, et al. Resilient modulus of unsaturated subgrade soil: experimental and theoretical investigations[J]. Canadian Geotechnical Journal, 2013, 50(2): 223-232.
    [16] FREDLUND D G, RAHARDJO H.Soil mechanics for unsaturated soils[M]. New York: Wiley-Interscience, 1993.
    [17] YANG S R, LIN H D, KUNG J H, et al.Suction-controlled laboratory test on resilient modulus of unsaturated compacted subgrade soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(9): 1375-1384.
    [18] KHOURY N, BROOKS R, KHOURY C, et al.Modeling resilientmodulus hysteretic behavior with moisture variation[J]. International Journal of Geomechanics, 2012, 12(5): 519-527.
    [19] SALOUR F, ERLINGSSON S, ZAPATA C E.Modelling resilient modulus seasonal variation of silty sand subgrade soils with matric suction control[J]. Canadian Geotechnical Journal, 2014, 51(12): 1413-1422.
    [20] HAN Z, VANAPALLI S K.Relationship between resilient modulus and suction for compacted subgrade soils[J]. Engineering Geology, 2016, 211: 85-97.
    [21] ZAMAN M, SOLANKI P, EBRAHIMI A, et al.Neural network modeling of resilient modulus using routine rubgrade soil properties[J]. International Journal of Geomechanics, 2010, 10(1): 1-12.
    [22] YAN K Z, XU H B, SHEN G H.Novel approach to resilient modulus using routine subgrade soil properties[J]. International Journal of Geomechanics, 2014, 14(6): 04014025.
    [23] ZHOU C J, HUANG B S, DRUMM E, et al.Soil resilient modulus regressed from physical properties and influence of seasonal variation on asphalt pavement performance[J]. Journal of Transportation Engineering, 2015, 141(1): 04014069.
    [24] AASHTO. Designation T307-99: determining the resilient modulus of soils and aggregate materials[S]. Washington: American Association of State Highway and Transportation Officials, 2003.
    [25] ASTM Designation: D5298-10. Standard test method for measurement of soil potential (suction) using filter paper[S]. West Conshohocken, PA: American Society for Testing and Materials, 2010.
    [26] LEONG E C, HE L, RAHARDJO H.Factors affecting the filter paper method for total and matric suction measurements[J]. Geotechnical Testing, 2002, 25(3): 322-333.
    [27] FREDLUND D G, XING A.Equation for the soil - water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31: 521-532.
    [28] JTG D30—2015公路路基设计规范[S]. 2015.
    (JTG D30—2015 Specification for design of highway subgrades[S]. 2015. (in Chinese))
    [29] HAN Z, VANAPALLI S K, ZOU W L.Integrated approaches for predicting soil-water characteristic curve and resilient modulus of compacted fine-grained subgrade soils[J]. Canadian Geotechnical Journal, 2017, 54(5): 646-63.
    [30] KHALILI N, KHABBAZ M H.A unique relationship for the determination of the shear strength of unsaturated soils[J]. Géotechnique, 1998, 48(2): 1-7.
    [31] VANAPALLI S K, FREDLUND D G, PUFAHL D E, et al.Model for the prediction of shear Strength with respect to soil suction[J]. Canadian Geotechnical Journal, 1996, 33(3): 379-392.
    [32] GARVEN E A, VANAPALLI S K.Evaluation of empirical procedures for predicting the shear strength of unsaturated soils[C]// ASCE. Proceedings of the 4th International Conference on unsaturated Soils. Carefree, 2006: 2570-2581.
    [33] GUPTA S C, RANAIVOSON A, EDIL T B, et al.Pavement design using unsaturated soil technology[R]. Minnesota: Minnesota Department of Transportation, St. Paul, 2007.
    [34] 兰伟. 路基土非饱和特性及回弹模量预估模型[D]. 上海: 同济大学, 2009.
    (LAN Wei.Unsaturated characteristics and prediction model of and resilient modulus of subgrade soil [D]. Shanghai: Tongji University, 2009. (in Chinese))
  • 期刊类型引用(39)

    1. 刘维正,黄轩嘉,徐阳,李慧丽,万家乐. 动力湿化作用下压实红黏土累积变形规律与控制研究. 岩土工程学报. 2025(03): 535-547 . 本站查看
    2. 肖乾,袁颖. 基于特征选取与SVR优化的软土路基弹性模量预测模型. 河北地质大学学报. 2025(01): 69-77 . 百度学术
    3. 张青山. 基于动态回弹模量的路基压实质量检测研究. 工程技术研究. 2025(06): 142-144 . 百度学术
    4. 付宏渊,杨琪毅,曾铃,高乾丰,文伟,陈璐. 多因素影响下预崩解炭质泥岩动回弹特性研究. 土木工程学报. 2024(02): 117-128 . 百度学术
    5. 崔新壮,张小宁,王艺霖,曾浩,高上,曹天才,吕伟,韩柏林. 路基湿度测量方法、演化规律及调控技术研究进展. 中国公路学报. 2024(06): 1-33 . 百度学术
    6. 郭晓东,李珍玉,黄莹,罗深平. 微生物改良膨胀土的动态回弹模量. 湖南城市学院学报(自然科学版). 2024(04): 1-7 . 百度学术
    7. 赵盛林,阎蕊珍,张翛,韩东霄. 循环流化床固硫灰路基动态回弹模量试验研究. 太原理工大学学报. 2024(05): 841-849 . 百度学术
    8. 张云志,李琼林,张东杰,章浩东,崔金刚,王依山,周杭. 长期循环荷载下冻结粉质黏土的临界动应力与动回弹模量的试验研究. 冰川冻土. 2024(05): 1594-1602 . 百度学术
    9. 彭俊辉,彭英杰,张军辉,李伟成. 考虑黏弹特性的路基土动态回弹模量试验及预估模型. 中国公路学报. 2024(11): 89-101 . 百度学术
    10. 张文周,何忠明,刘正夫,刘洋. 炭质泥岩粗粒土动态回弹模量及预估模型研究. 水利水电技术(中英文). 2023(02): 161-169 . 百度学术
    11. 李长生. 重载铁路粉质黏土填料回弹模量及预估模型研究. 路基工程. 2023(02): 1-6 . 百度学术
    12. 唐鑫,张吾渝,何蓓,董超凡,刘成奎. 冻融循环作用下黄土动态回弹模量研究. 地下空间与工程学报. 2023(02): 456-464+485 . 百度学术
    13. 袁根平. 路基回弹模量变化对沥青路面结构的影响分析. 交通世界. 2023(28): 106-108 . 百度学术
    14. 张锋,唐康为,尹思琪,冯德成,陈志国. 冻融粉质黏土的剪切波速与动态回弹模量及其转换关系. 岩土力学. 2023(S1): 221-233 . 百度学术
    15. 安然,陈欣,张先伟,王港,高浩东. 单轴加载过程中钢渣稳定土细观裂隙的动态演化特征. 岩土力学. 2023(S1): 300-308 . 百度学术
    16. 曾强. 含水率对路基压实系数检测的影响分析. 江西建材. 2023(10): 117-118+121 . 百度学术
    17. 刘侠,刘依依,鞠建,冯豪杰,刘国强,蒋红光. 不同加载频率和应力状态下细粒土路基动力特性研究. 山东交通科技. 2023(05): 1-5+9 . 百度学术
    18. 徐明,康雅晶,马斯斯,张鹤. 基于贝叶斯优化的XGBoost模型预测路基回弹模量. 公路交通科技. 2023(11): 51-60 . 百度学术
    19. 白梅,刘志彬,张书建,张云,罗婷倚,唐亚森. 毛细导水土工材料调控路基水分场现场试验研究. 东南大学学报(自然科学版). 2022(01): 117-123 . 百度学术
    20. 冉武平,王金山,李玲,陈慧敏. 粗粒硫酸盐渍土动态回弹模量试验及预估模型. 湖南大学学报(自然科学版). 2022(03): 154-166 . 百度学术
    21. 喻心佩,罗深平,李梓祥,余燚. 非饱和石灰改良膨胀土的持水及强度特性试验研究. 广州航海学院学报. 2022(01): 64-69 . 百度学术
    22. 巫康. 吸附结合水影响下的含砂低液限黏土固结特性分析. 工程机械与维修. 2022(03): 208-211 . 百度学术
    23. 张航,周志刚,韩健. 土工格栅加筋碎石土动回弹模量及预估模型试验研究. 土木与环境工程学报(中英文). 2022(04): 52-59 . 百度学术
    24. 何忠明,卢逸恒,向达,刘正夫. 动力及湿化作用下粗粒土路堤填料的力学性能. 中南大学学报(自然科学版). 2022(07): 2645-2655 . 百度学术
    25. 肖源杰,孔坤锋,姜钰,华文俊,朱宏伟,蔡德钩,刘宇飞. 建筑固废再生粒料基层填料动回弹模量特性及统一预估模型研究. 岩石力学与工程学报. 2022(11): 2337-2352 . 百度学术
    26. 李程,孙甲乾,王曈,赵小春,卫奥忠,余祥晶,王旭昊. 凝灰岩碎石回弹模量影响规律. 土木工程与管理学报. 2022(06): 41-48 . 百度学术
    27. 杨若辰,张吾渝,孙晓辉,唐雄宇,刘成奎. 吸水土工毯作用于盐渍土水盐移除性能评价. 水利水电技术(中英文). 2022(12): 56-64 . 百度学术
    28. 张军辉,胡健坤,彭俊辉,范海山,周超. 基于人工神经网络的路基土回弹模量预估方法(英文). Journal of Central South University. 2021(03): 898-910 . 百度学术
    29. 蔡玉洁,王伟. 动态回弹模量测试仪在高速公路路基压实质量检测上的应用. 科学技术创新. 2021(09): 139-140 . 百度学术
    30. 蒋红光,陈思涵,孙辉,包佳佳,龙厚胜,姚占勇. 黄泛区中高液限黏土动、静态回弹模量及预估模型研究. 中国公路学报. 2021(03): 103-112 . 百度学术
    31. 中国路基工程学术研究综述·2021. 中国公路学报. 2021(03): 1-49 . 百度学术
    32. 王旭昊,余祥晶,李程,李佳,高新民,张亚刚,李联伟. 粒料回弹模量室内试验方法. 科学技术与工程. 2021(13): 5201-5209 . 百度学术
    33. 张明礼,张瑞玲,冯德刚,严艳锋,周志雄,郝东苗,李广. 寒区工程锅盖效应病害调查与防治研究进展. 科学技术与工程. 2021(19): 7863-7873 . 百度学术
    34. 冉武平,王金山,艾贤臣,陈慧敏,钱建固. 粗粒氯盐渍土动态回弹模量试验研究与理论模型. 岩土工程学报. 2021(09): 1746-1754 . 本站查看
    35. 冉武平,陈慧敏,李玲,冯立群. 干湿循环下粗粒土回弹模量演变规律及模型预估和修正. 吉林大学学报(工学版). 2021(06): 2079-2086 . 百度学术
    36. 苑智江,王川,关宏信,高英力. 掺粉煤灰气泡轻质土动态回弹模量特性研究. 中外公路. 2021(05): 218-221 . 百度学术
    37. 赵腾远,宋超,何欢. 小样本条件下江苏软土路基回弹模量的贝叶斯估计——基于静力触探数据与高斯过程回归的建模分析. 岩土工程学报. 2021(S2): 137-141 . 本站查看
    38. 张军辉,彭俊辉,郑健龙. 路基土动态回弹模量预估进展与展望. 中国公路学报. 2020(01): 1-13 . 百度学术
    39. 冯怀平,宋慧来,常建梅,魏亚辉. 浸水作用下重载铁路基床动回弹模量衰减规律. 中国铁道科学. 2020(03): 21-30 . 百度学术

    其他类型引用(33)

计量
  • 文章访问数:  342
  • HTML全文浏览量:  6
  • PDF下载量:  246
  • 被引次数: 72
出版历程
  • 收稿日期:  2018-01-20
  • 发布日期:  2019-01-24

目录

    /

    返回文章
    返回