Citation: | LIU Wei-zheng, ZENG Yi-jun, YAO Yong-sheng, ZHANG Jun-hui. Experimental study and prediction model of dynamic resilient modulus of compacted subgrade soils subjected to moisture variation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 175-183. DOI: 10.11779/CJGE201901020 |
[1] |
SEED H B, CHAN C K, LEE C E.Resilience characteristics of subgrade soils and their relation to fatigue failures in asphalt pavements[C]// Proceedings of the International Conference on the Structural Design of Asphalt Pavements. Michigan, 1962: 611-636.
|
[2] |
National Cooperative Highway Research Program (NCHRP). Development of the 2002 guide for the design of new and rehabilitated pavement structures[R]. Washington, D C: NCHRP Transportation Research Board, 2004.
|
[3] |
JTG D50—2017公路沥青路面设计规范[S]. 2017.
(JTG D50—2017 Specification for design of highway asphalt pavement[S]. 2017. (in Chinese)) |
[4] |
NGUYEN Q, FREDLUND D G, SAMARASEKERA L, et al.Seasonal pattern of matric suctions in highway subgrades[J]. Canadian Geotechnical Journal, 2010, 47(3): 267-280.
|
[5] |
钱劲松, 王朋, 凌建明, 等. 潮湿多雨地区高速公路路基湿度的实测特征[J]. 同济大学学报(自然科学版), 2013, 41(12): 1812-1817.
(QIAN Jin-song, WANG Peng, LING Jian-ming, et al.In-situ investigation of subgrade moisture of expressway in humid zone[J]. Journal of Tongji University (Natural Science), 2013, 41(12): 1812-1817. (in Chinese)) |
[6] |
DRUMM E C, REEVES J S, MADGETT M R, et al.Subgrade resilient modulus correction for saturation effects[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(7): 663-670.
|
[7] |
LIANG R Y, RABAB’AH S, KHASAWNEH M. Predicting moisture-dependent resilient modulus of cohesive soils using soil suction concept[J]. Journal Transportation Engineering, 2008, 134(1): 34-40.
|
[8] |
SALOUR F.Moisture influence on structural behaviour of pavements: field and laboratory investigations[D]. Stockholm: KTH Royal Institute of Technology, 2015.
|
[9] |
MEHROTRA A, ABU-FARSAKH M, GASPARD K.Development of subgrade Mr constitutive models based on physical soil properties[J]. Road Materials and Pavement, 2018, 19(1): 56-70.
|
[10] |
WITCZAK M W, UZAN J.The universal airport pavement design system. Report I of V: granular material characterization[R]. Maryland: University of Maryland, 1988.
|
[11] |
LEKARP F, ISACSSON U, DAWSON A.State of the art I: resilient response of unbound aggregates[J]. Journal of Transportation Engineering, 2000, 126(1): 66-75.
|
[12] |
LI D, SELIG E T.Resilient modulus for fine-grained subgrade soils[J]. Journal of Geotechnical Engineering, 1994, 120(6): 939-957.
|
[13] |
KHOURY N, BROOKS R, BOENI S Y, et al.Variation of resilient modulus, strength, and modulus of elasticity of stabilized soils with postcompaction moisture contents[J]. Journal of Materials in Civil Engineering, 2013, 25(2): 160-166.
|
[14] |
HEATH A C, PESTANA J M, HARVEY J T, et al.Normalizing behavior of unsaturated granular pavement materials[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(9): 896-904.
|
[15] |
NG C W W, ZHOU C, YUAN Q, et al. Resilient modulus of unsaturated subgrade soil: experimental and theoretical investigations[J]. Canadian Geotechnical Journal, 2013, 50(2): 223-232.
|
[16] |
FREDLUND D G, RAHARDJO H.Soil mechanics for unsaturated soils[M]. New York: Wiley-Interscience, 1993.
|
[17] |
YANG S R, LIN H D, KUNG J H, et al.Suction-controlled laboratory test on resilient modulus of unsaturated compacted subgrade soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(9): 1375-1384.
|
[18] |
KHOURY N, BROOKS R, KHOURY C, et al.Modeling resilientmodulus hysteretic behavior with moisture variation[J]. International Journal of Geomechanics, 2012, 12(5): 519-527.
|
[19] |
SALOUR F, ERLINGSSON S, ZAPATA C E.Modelling resilient modulus seasonal variation of silty sand subgrade soils with matric suction control[J]. Canadian Geotechnical Journal, 2014, 51(12): 1413-1422.
|
[20] |
HAN Z, VANAPALLI S K.Relationship between resilient modulus and suction for compacted subgrade soils[J]. Engineering Geology, 2016, 211: 85-97.
|
[21] |
ZAMAN M, SOLANKI P, EBRAHIMI A, et al.Neural network modeling of resilient modulus using routine rubgrade soil properties[J]. International Journal of Geomechanics, 2010, 10(1): 1-12.
|
[22] |
YAN K Z, XU H B, SHEN G H.Novel approach to resilient modulus using routine subgrade soil properties[J]. International Journal of Geomechanics, 2014, 14(6): 04014025.
|
[23] |
ZHOU C J, HUANG B S, DRUMM E, et al.Soil resilient modulus regressed from physical properties and influence of seasonal variation on asphalt pavement performance[J]. Journal of Transportation Engineering, 2015, 141(1): 04014069.
|
[24] |
AASHTO. Designation T307-99: determining the resilient modulus of soils and aggregate materials[S]. Washington: American Association of State Highway and Transportation Officials, 2003.
|
[25] |
ASTM Designation: D5298-10. Standard test method for measurement of soil potential (suction) using filter paper[S]. West Conshohocken, PA: American Society for Testing and Materials, 2010.
|
[26] |
LEONG E C, HE L, RAHARDJO H.Factors affecting the filter paper method for total and matric suction measurements[J]. Geotechnical Testing, 2002, 25(3): 322-333.
|
[27] |
FREDLUND D G, XING A.Equation for the soil - water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31: 521-532.
|
[28] |
JTG D30—2015公路路基设计规范[S]. 2015.
(JTG D30—2015 Specification for design of highway subgrades[S]. 2015. (in Chinese)) |
[29] |
HAN Z, VANAPALLI S K, ZOU W L.Integrated approaches for predicting soil-water characteristic curve and resilient modulus of compacted fine-grained subgrade soils[J]. Canadian Geotechnical Journal, 2017, 54(5): 646-63.
|
[30] |
KHALILI N, KHABBAZ M H.A unique relationship for the determination of the shear strength of unsaturated soils[J]. Géotechnique, 1998, 48(2): 1-7.
|
[31] |
VANAPALLI S K, FREDLUND D G, PUFAHL D E, et al.Model for the prediction of shear Strength with respect to soil suction[J]. Canadian Geotechnical Journal, 1996, 33(3): 379-392.
|
[32] |
GARVEN E A, VANAPALLI S K.Evaluation of empirical procedures for predicting the shear strength of unsaturated soils[C]// ASCE. Proceedings of the 4th International Conference on unsaturated Soils. Carefree, 2006: 2570-2581.
|
[33] |
GUPTA S C, RANAIVOSON A, EDIL T B, et al.Pavement design using unsaturated soil technology[R]. Minnesota: Minnesota Department of Transportation, St. Paul, 2007.
|
[34] |
兰伟. 路基土非饱和特性及回弹模量预估模型[D]. 上海: 同济大学, 2009.
(LAN Wei.Unsaturated characteristics and prediction model of and resilient modulus of subgrade soil [D]. Shanghai: Tongji University, 2009. (in Chinese)) |
[1] | HAN Zhong, ZHANG Lin, DING Luqiang, ZOU Weilie, FENG Huaiping, YING Zhenqian. Soil-water characteristics and dynamic responses of compacted clay under different moisture and temperature paths[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2591-2601. DOI: 10.11779/CJGE20230902 |
[2] | Soil-water characteristic curve model considering grain size gradation and deformation of soil[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240339 |
[3] | LIU Yan, YU Jian-tao. Hysteresis model for soil-water characteristic curve under dynamic conditions[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 62-68. DOI: 10.11779/CJGE202101007 |
[4] | CAI Guo-qing, HAN Bo-wen, YANG Yu, LIU Yi, ZHAO Cheng-gang. Experimental study on soil-water characteristic curves of sandy loess[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 11-15. DOI: 10.11779/CJGE2020S1003 |
[5] | HAN Bo-wen, CAI Guo-qing, LI Jian, ZHAO Cheng-gang. Hydro-mechanical coupling bounding surface model for unsaturated soils considering bonding effect of particles[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2059-2068. DOI: 10.11779/CJGE202011011 |
[6] | CAI Guo-qing, LIU Yi, XU Run-ze, LI Jian, ZHAO Cheng-gang. Experimental investigation for soil-water characteristic curve of red clay in full suction range[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 13-16. DOI: 10.11779/CJGE2019S2004 |
[7] | WANG Xiao-qi, WANG Shi-ji, CHENG Ming-shu, LI Xian, ZHOU Chao-yun, HE Bing-hui. Experimental study on soil-water characteristic curve of expensive soil considering net normal stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 235-240. DOI: 10.11779/CJGE2018S1038 |
[8] | TAO Gao-liang, KONG Ling-wei. Prediction of air-entry value and soil-water characteristic curve of soils with different initial void ratios[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 34-38. DOI: 10.11779/CJGE2018S1006 |
[9] | TANG Dong, QI Xiao-hui, JIANG Shui-hua, LI Dian-qing. Effect of different antecedent rainfalls and SWCCs on slope stability[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 148-155. DOI: 10.11779/CJGE2015S1029 |
[10] | LIU Yan, ZHAO Chenggang. Hysteresis model for soil-water characteristic curves[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 399-405. |
1. |
介玉新. Rowe剪胀方程及一种新的推导方法. 水力发电学报. 2024(01): 109-123 .
![]() | |
2. |
蔡新合,陈子玉,李国英. 考虑颗粒破碎能耗的堆石料剪胀方程及其应用. 水利水运工程学报. 2024(03): 127-135 .
![]() | |
3. |
王步雪岩,孟庆山,钱建固. 基于体积变化的珊瑚砂砾破碎率研究. 岩土力学. 2024(07): 1967-1975 .
![]() | |
4. |
蔡新合,朱雨萌,李国英. 基于广义塑性理论框架的堆石料变形计算. 水利水运工程学报. 2024(04): 127-139 .
![]() | |
5. |
程诗芸,彭杨旭,张紫怡,郝晨曦,丰家俊,郭鸿. 土颗粒破碎机理的研究进展. 安徽建筑. 2023(01): 141-143 .
![]() | |
6. |
王柳江,刘啸宇,刘斯宏,扎西顿珠,沈超敏. 改进hhu-SH模型及其在面板堆石坝工程中的应用. 河海大学学报(自然科学版). 2023(02): 64-72 .
![]() | |
7. |
陈榕,武智勇,郝冬雪,高宇聪. 高应力下石英砂三轴剪切颗粒破碎演化规律及影响. 岩土工程学报. 2023(08): 1713-1722 .
![]() | |
8. |
迟世春,郭宇,马锡钰,贾宇峰. 颗粒流变破碎与堆石料流变应变计算. 水力发电. 2023(10): 77-84+91 .
![]() |