Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于等效骨架孔隙比指标的饱和砂类土抗液化强度评价

吴琪, 陈国兴, 朱雨萌, 周正龙, 周燕国

吴琪, 陈国兴, 朱雨萌, 周正龙, 周燕国. 基于等效骨架孔隙比指标的饱和砂类土抗液化强度评价[J]. 岩土工程学报, 2018, 40(10): 1912-1922. DOI: 10.11779/CJGE201810019
引用本文: 吴琪, 陈国兴, 朱雨萌, 周正龙, 周燕国. 基于等效骨架孔隙比指标的饱和砂类土抗液化强度评价[J]. 岩土工程学报, 2018, 40(10): 1912-1922. DOI: 10.11779/CJGE201810019
WU Qi, CHEN Guo-xing, ZHU Yu-meng, ZHOU Zheng-long, ZHOU Yan-guo. Evaluating liquefaction resistance of saturated sandy soils based on equivalent skeleton void ratio[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1912-1922. DOI: 10.11779/CJGE201810019
Citation: WU Qi, CHEN Guo-xing, ZHU Yu-meng, ZHOU Zheng-long, ZHOU Yan-guo. Evaluating liquefaction resistance of saturated sandy soils based on equivalent skeleton void ratio[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1912-1922. DOI: 10.11779/CJGE201810019

基于等效骨架孔隙比指标的饱和砂类土抗液化强度评价  English Version

基金项目: 国家自然科学基金项目(41172258; 51438004); 国家重点基础研究发展计划(“973”计划)项目(2014CB047005)
详细信息
    作者简介:

    吴 琪(1991- ),男,博士研究生,主要从事混合料动力特性研究。E-mail:qw09061801@163.com。

    通讯作者:

    陈国兴,E-mail:gxc6307@163.com

  • 中图分类号: TU43

Evaluating liquefaction resistance of saturated sandy soils based on equivalent skeleton void ratio

  • 摘要: 为探讨各类饱和砂类土的物理特性对其抗液化强度CRR的影响,将具有不同细粒含量FC的福建、南京和南通砂类土分为3组:①相同的相对密度Dr;②相同的孔隙比e;③相同的骨架孔隙比esk。对具有不同物理特性的三类饱和砂类土进行了一系列均等固结不排水循环三轴试验,结果表明:eDr相同的饱和砂类土的CRR随FC的增加而降低;但esk相同的砂类土的CRR随FC的增加而增大。结合文献中十类砂类土的CRR试验数据,分析表明:各类饱和砂类土的CRR随其等效骨架孔隙比esk的增大而单调地降低,且两者呈现较好的幂函数关系。这表明能综合反映砂类土颗粒组成,密实状态和粗细粒接触状态的esk是表征饱和砂类土CRR的一个有效物理特性指标;并首次发现饱和砂类土的CRR-esk关系曲线的最佳拟合参数AB值由砂粒和细粒的物理特性共同决定。据此,饱和砂类土的CRR可仅由其物理特性指标较好地预测。
    Abstract: In order to investigate the effect of physical properties on liquefaction resistance CRR, different types of saturated sandy soils (Fujian, Nanjing and Nantong sandy soils with different fines contents (FC)) are categorized as three different cases: (1) a fixed relative density Dr; (2) a fixed void ratio e; (3) a fixed skeleton void ratio esk. A series of isotropically consolidated undrained cyclic triaxial tests are performed on the three saturated sandy soils with various physical properties. The test results show that an increase in FC causes a decrease in CRR of saturated sandy soils at a constant Dr or e, and the CRR at a constant esk will increase with the increase of FC. Based on the test data here and from ten classified saturated sandy soils in the literatures, it is found that the CRR decreases monotonically with the increase of the equivalent skeleton void ratio esk, and a power relationship between CRR and esk is then obtained, which means esk, synthesizing the nature of grain-size distribution, density state and intergrain contact, is an appropriate index of physical properties for evaluating the CRR of sandy soils. Moreover, it is first discovered that the best-fit parameters A and B of CRR-esk correlation can be determined uniquely in terms of index properties of sand grains and fine grains for sandy soils. Consequentely, the CRR value of sandy soils can be captured only using index properties.
  • [1] IDRISS I M, BOULANGER R W.Soil liquefaction during earthquakes[M]. Oakland: Earthquake Engineering Research Institute, 2008.
    [2] 陈国兴, 金丹丹, 常向东, 等. 最近20年地震中场地液化现象的回顾与土体液化可能性的评价准则[J]. 岩土力学, 2013, 34(10): 2737-2755.
    (CHEN Guo-xing, JIN Dan-dan, CHANG Xiang-dong, et al.Preliminary research on liquefaction characteristics of Wenchuan 8.0 earthquake[J]. Rock and Soil Mechanics, 2013, 34(10): 2737-2755. (in Chinese))
    [3] CHAN Y F, ALAGAPPAN K, GANDHI A, et al.Disaster management following the Chi-Chi earthquake in Taiwan[J]. Prehospital and Disaster Medicine, 2006, 21(3): 196-202.
    [4] 袁晓铭, 曹振中, 孙锐, 等. 汶川8.0级地震液化特征初步研究[J]. 岩石力学与工程学报, 2009, 28(6): 1288-1296.
    (YUAN Xiao-ming, CAO Zhen-zhong, SUN Rui, et al.Preliminary research on liquefaction characteristics of Wenchuan 8.0 earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6): 1288-1296. (in Chinese))
    [5] SASAKIA Y, TOWHATA I, MIYAMOTO K, et al.Reconnaissance report on damage in and around riverlevees caused by the 2011 off the Pacific coast of Tohoku earthquake[J]. Soils and Foundations, 2012, 52(5): 1016-1032.
    [6] BHATTACHARYA S, HYODO M, GODA K, et al.Liquefaction of soil in the Tokyo Bay area from the 2011Tohoku (Japan) earthquake[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(11): 1618-1628.
    [7] GBT50145—2007 土的工程分类标准[S]. 2007. (GBT50145—2007 Specification of soil test[S]. 2007. (in Chinese))
    [8] 刘雪珠, 陈国兴. 黏粒含量对南京粉细砂液化影响的试验研究[J]. 地震工程与工程振动, 2003, 23(3): 150-155.
    (LIU Xue-zhu, CHEN Guo-xing.Experimental study on influence of clay particle content on liquefaction of Nanjing fine sand[J]. Earthquake Engineering and Engineering Vibration, 2003, 23(3): 150-155. (in Chinese))
    [9] POLITO C P, MARTIN II J R. Effects of nonplastic fines on the liquefaction resistance of sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(5): 408-415.
    [10] SITHARAM T G, DASH H K, JAKKA R S.Postliquefaction undrained shear behavior of sand-silt mixtures at constant void ratio[J]. International Journal of Geomechanics, 2013, 13(4): 421-429.
    [11] HSIAO D H, PHAN V T A, HSIEH Y T, et al. Engineering behavior and correlated parameters from obtained results of sand-silt mixtures[J]. Soil Dynamics and Earthquake Engineering, 2015, 77: 137-151.
    [12] SHEN C K, VRYMOED J L, UYENO C K.The effect of fines on liquefaction of sands[C]// Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering. Tokyo: Japanese Society of Soil Mechanics and Foundation Engineering, 1977: 381-385.
    [13] DE ALBA P, SEED H B, CHAN C K.Sand liquefaction in large-scale simple shear tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1976, 102.
    [14] STAMATOPOULOS C A.An experimental study of the liquefaction strength of silty sands in terms of the state parameter[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(8): 662-678.
    [15] CHANG W J, HONG M L.Effects of clay content on liquefaction characteristics of gap-graded clayey sands[J]. Soils and Foundations, 2008, 48(1): 101-114.
    [16] 吴琪, 陈国兴, 周正龙, 等. 细粒含量对细粒-砂粒-砾粒混合料动强度的影响[J]. 岩土工程学报, 2017, 39(6): 1038-1047.
    (WU Qi, CEHN Guo-xing, ZHOU Zheng-long, et al.Influence of fines content on cyclic resistance of fines-sand-gravel mixtures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1038-1047. (in Chinese))
    [17] CUBRINOVSKI M, ISHIHARA K.Empirical correlation between SPT N-value and relative density for sandy soils[J]. Soils and Foundations, 1999, 39(5): 61-71.
    [18] YILMAZ Y, MOLLAMAHMUTOGLU M.Characterization of liquefaction susceptibility of sands by means of extreme void ratios and/or void ratio range[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(12): 1986-1990.
    [19] THEVANAYAGAM S.Effect of fines and confining stress on undrained shear strength of silty sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(6): 479-491.
    [20] THEVANAYAGAM S, MARTIN G R.Liquefaction in silty soils-screening and remediation issue[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(9-12): 1035-1042.
    [21] RAHMAN M M, LO S R, GNANENDRAN C T.On equivalent granular void ratio and steady state behaviour of loose sand with fines[J]. Canadian Geotechnical Journal, 2008, 45(10): 1439-1456.
    [22] THEVANAYAGAM S, SHENTHAN T, MOHAN S, et al.Undrained fragility of clean sands, silty sands, and sandy silts[J]. Journal of the Geotechnical and Geoenvironmental Engineering, 2002, 128(10): 849-859.
    [23] RAHMAN M M, LO S R, BAKI M A L. Equivalent granular state parameter and undrained behaviour of sand-fines mixtures[J]. Acta Geotechnica, 2011, 6(4): 183-194.
    [24] MOHAMMADI A, QADIMI A.A simple critical state approach to predicting the cyclic and monotonic response of sands with different fines contents using the equivalent intergranular void ratio[J]. Acta Geotechnica, 2015, 10(5): 587-606.
    [25] ISHIHARA K.Liquefaction and flow failure during earthquakes[J]. Géotechnique, 1993, 43(3): 351-451.
    [26] SKEMPTON A W.The pore-pressure coefficients A and B[J]. Géotechnique, 1954, 4(4): 143-147.
    [27] 张克绪. 饱和砂土液化应力条件[J]. 地震工程与工程振动, 1984, 4(1): 99-109.
    (ZHANG Ke-xu.Stress condition inducing liquefaction of saturated sand[J]. Earthquake Engineering and Engineering Vibration, 1984, 4(1): 99-109. (in Chinese))
    [28] SEED H B, IDRISS I M, ARANGO I.Evaluation of liquefaction potential using field performance data[J]. Journal of Geotechnical Engineering, 1983, 109(3): 458-482.
    [29] CASAGRANDE A.Liquefaction and cyclic deformation of sands: a critical review[M]. Cambridge: Pierce Hall, 1979.
    [30] SEED H B, LEE K L.Liquefaction of saturated sand during cyclic loading[J]. Journal of the Soil Mechanics and Foundation Division, 1966, 92(6): 105-134.
    [31] SINGH S.Liquefaction characteristics of silts[J]. Geotechnical and Geological Engineering, 1996, 14(1): 1-19.
    [32] TOWHATA I.Geotechnical earthquake engineering[M]. Berlin: Springer Science & Business Media, 2008.
    [33] 周镜. 岩土工程中的几个问题[J]. 岩土工程学报, 1999, 21(1): 5-11.
    (ZHOU Jing.Some cases in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(1): 5-11. (in Chinese))
    [34] 王炳辉, 陈国兴. 循环荷载下饱和南京细砂的孔压增量模型[J]. 岩土工程学报, 2011, 33(2): 188-194.
    (WANG Bing-hui, CHEN Guo-xing.Pore water pressure increment model for saturated Nanjing fine sand subjected to cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 188-194. (in Chinese))
    [35] SEED H B, MARTIN P P, LYSMER J.The generation and dissipation of pore water pressures during soil liquefaction[M]. California: College of Engineering, University of California, 1975.
    [36] SEED H B, IDRISS I M.Simplified procedure for evaluating soil liquefaction potential[J]. Journal of Soil Mechanics & Foundations Div, 1971, 97: 1249-1273.
    [37] CHOOBBASTI A J, GHALANDARZADEH A, ESMAEILI M.Experimental study of the grading characteristic effect on the liquefaction resistance of various graded sands and gravelly sands[J]. Arabian Journal of Geosciences, 2014, 7(7): 2739-2748.
    [38] DASH H K, SITHARAM T G, BAUDET B A.Influence of non-plastic fines on the response of a silty sand to cyclic loading[J]. Soils and Foundations, 2010, 50(5): 695-704.
    [39] HUANG Y T, HUANG A B, KUO Y C, et al.A laboratory study on the undrained strength of a silty sand from Central Western Taiwan[J]. Soil Dynamics and Earthquake Engineering, 2004, 24(9): 733-743.
    [40] KIM U, KIM D, ZHUANG L.Influence of fines content on the undrained cyclic shear strength of sand-clay mixtures[J]. Soil Dynamics and Earthquake Engineering, 2016, 83: 124-134.
    [41] KUERBIS R H.The effect of gradation and fines content on the undrained loading response of sand[D]. Vancouver: University of British Columbia, 2010.
    [42] PAPADOPOULOU A, TIKA T.The effect of fines on critical state and liquefaction resistance characteristics of non-plastic silty sands[J]. Soils and Foundations, 2008, 48(5): 713-725.
  • 期刊类型引用(12)

    1. 邱松楠,黎晓冬,周鹏展. 渗透破坏作用下管涌土强度劣化机制及预测模型. 长江科学院院报. 2025(01): 186-193+207 . 百度学术
    2. 孙小宸,宿利平,刘洋. 基于液化势指标的砂土抗液化评价方法及应用. 工程地质学报. 2023(02): 671-679 . 百度学术
    3. 左康乐,顾晓强. 不同粒径比下含细颗粒砂土液化特性的试验研究. 岩土工程学报. 2023(07): 1461-1470 . 本站查看
    4. 施建勇. 江苏省地基基础行业技术创新与应用. 江苏建筑. 2023(S1): 28-33 . 百度学术
    5. 吴杨,崔杰,李晨,温丽维,单振东,廖静容. 细粒含量对岛礁吹填珊瑚砂最大动剪切模量影响的试验研究. 岩石力学与工程学报. 2022(01): 205-216 . 百度学术
    6. 李方圆,董林,夏坤,李燕,王晓磊. 细粒含量对砂土液化势影响探讨. 地震工程与工程振动. 2022(02): 244-251 . 百度学术
    7. 周高云,管红辉. 循环荷载作用下粉细砂不排水动力响应和强度特性研究. 低温建筑技术. 2022(05): 109-114 . 百度学术
    8. 吴琪,杨铮涛,刘抗,陈国兴. 细粒含量对饱和珊瑚砂动力变形特性影响试验研究. 岩土工程学报. 2022(08): 1386-1396 . 本站查看
    9. 刘抗,陈国兴,吴琪,马维嘉,秦悠. 循环加载方向对饱和珊瑚砂液化特性的影响. 岩土力学. 2021(07): 1951-1960 . 百度学术
    10. 吴琪,李浩,陈国兴. 基于基本物理指标的饱和砂类土液化评价方法的通用性. 防灾减灾工程学报. 2021(04): 883-892 . 百度学术
    11. 吴琪,刘抗,郭启洲,赵凯,陈国兴. 基于二元介质模型的砂类土小应变剪切模量评价方法. 岩土力学. 2020(11): 3641-3650 . 百度学术
    12. 吴琪,李晓雪,杨文保,赵凯,陈国兴. 细粒含量对饱和砂类土小应变剪切模量的影响. 哈尔滨工程大学学报. 2019(07): 1297-1303 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  454
  • HTML全文浏览量:  11
  • PDF下载量:  217
  • 被引次数: 22
出版历程
  • 收稿日期:  2017-07-13
  • 发布日期:  2018-10-24

目录

    /

    返回文章
    返回