• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

土力学理论需要发展与变革

赵成刚, 李舰, 宋朝阳, 蔡国庆, 刘艳

赵成刚, 李舰, 宋朝阳, 蔡国庆, 刘艳. 土力学理论需要发展与变革[J]. 岩土工程学报, 2018, 40(8): 1383-1394. DOI: 10.11779/CJGE201808003
引用本文: 赵成刚, 李舰, 宋朝阳, 蔡国庆, 刘艳. 土力学理论需要发展与变革[J]. 岩土工程学报, 2018, 40(8): 1383-1394. DOI: 10.11779/CJGE201808003
ZHAO Cheng-gang, LI Jian, SONG Zhao-yang, CAI Guo-qing, LIU Yan. Theories of soil mechanics need reform and development[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1383-1394. DOI: 10.11779/CJGE201808003
Citation: ZHAO Cheng-gang, LI Jian, SONG Zhao-yang, CAI Guo-qing, LIU Yan. Theories of soil mechanics need reform and development[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1383-1394. DOI: 10.11779/CJGE201808003

土力学理论需要发展与变革  English Version

基金项目: 国家自然科学基金项目(51478135)

Theories of soil mechanics need reform and development

  • 摘要: 土力学经过90多年的发展,已经成为岩土工程中不可缺少的理论分析工具。但土力学目前仍然处于半理论、半经验的状态,其理论预测结果具有非常大的不确定性。如何克服这些不足,使土力学理论不断向前发展和变革,是土力学研究者不可推卸的责任。首先,基于土的易变性与敏感性论证了土是一种非常复杂的、难以用简单的一、两个变量进行精确定量描述的材料; 其次,揭示了土力学目前是一种简化的理论,忽略了很多影响因素,难以描述土的复杂性质,由此产生了非常大的不确定性; 第三,指出有效应力原理实质上是一种等效的近似方法,并就有效应力的定义、表述、理解和作用及其局限性进行了研究和探讨; 最后,针对土力学目前存在的不足以及发展、变革的需求,提出了建立考虑多因素相互作用和影响的土力学理论的观点,提倡用多个因素(或多场)作用的观点研究和描述土的性质和行为。
    Abstract: With more than 90 years of development, the soil mechanics has become an indispensable theoretical analysis tool in geotechnical engineering. On the one hand, the soil mechanics is still a subject containing half theory and half experience, and its theoretical predictions are greatly uncertain. On the other hand, the geotechnical engineering problems become more complex and more important with the economic and social development. These situations force the development and reform of theories of soil mechanics. Firstly, the soil is demonstrated to be a kind of variable and sensitive material consisting of solid particles, pore water and pore air. Thus, it is difficult to accurately and quantitatively describe soil behaviors by using a simple one or two variables. Secondly, it is revealed that the principle of effective stress is a kind of simplified theory ignoring the effects of other factors on the strength and deformation of soils with the exception of effective stress. Therefore the classic soil mechanism is difficult to describe the complex soil behaviors, which results in a very large uncertainty of predicted results for soil behaviors. Thirdly, it is pointed out that the principle of effective stress is an equivalent approximation method, and the definition, expression and comprehension of the effective stress and its limitations are studied and discussed for saturated and unsaturated soils as follows: (1) In fact, the effective stress is an equation to describe the distribution of the total stress to the effective stress and the pore pressure. Then a two-phase saturated soil is simplified to a single-phase medium. The change of pore water pressure with void ratio, soil structure and other factors under given loading conditions implies that the effective stress is not an independent stated variable. (2) The single stress expressions for unsaturated soils is also proposed in the same way. However, its depicting ability for mechanical behaviors of unsaturated soils is not satisfactory. Then, the double stress variables are proposed to describe the mechanical behaviors of unsaturated soils. (3) It should be noted that the effective stress is the main controlling variable for the strength and deformation of saturated soils rather than the only one. Finally, in view of the current shortcomings of soil mechanics and the demand of geotechnical engineering problems, it is proposed to establish the soil mechanics considering the interaction and influence of multiple factors, and to advocate the study and description of soil behavior with the viewpoints of multiple factors (or multiple fields) rather than using only the effective stress.
  • [1] TERZAGHI K.Erdbaumechanik auf Bodenphysikalischer Grundlage[M]. Deuticke Vienna, 1925.
    (TERZAGHI K.Earthwork mechanics based an physics of soils[M]. Deuticke Vienna, 1925. (in German))
    [2] GENS A.Soil-environment interactions in geotechnical engineering[J]. Géotechnique, 2010, 60(1): 3-74.
    [3] 陈正汉. 非饱和土与特殊土力学的基本理论研究[J]. 岩土工程学报, 2014, 36(2): 201-272.
    (CHEN Zheng-han.On basic theories of unsaturated soils and special soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 201-272. (in Chinese))
    [4] 张建民. 砂土动力学若干基本理论探究[J]. 岩土工程学报, 2012, 34(1): 1-50.
    (ZHANG Jian-min.New advances in basic theories of sand dynamics[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 1-50. (in Chinese))
    [5] 陈国兴. 岩土地震工程[M]. 北京: 科学出版社, 2007.
    (CHEN Guo-xing.Geotechnical earthquake engineering[M]. Beijing: Science Press, 2007. (in Chinese))
    [6] ROSCOE K H, SCHOFIELD A N, WROCH C P.On the yielding of soils[J]. Géotechnique, 1958, 8(1): 22-53.
    [7] ROSCOE K H, SCHOFIELD A N, THURAIRAJAH A H.Yielding of soils in states wetter than critical[J]. Géotechnique, 1963, 13(3): 211-240.
    [8] ROSCOE K H, BURLAND T B.On the generalized stress-strain behavior of wet clay[C]// Engineering Plasticity. Cambridge, 1968: 535-609.
    [9] SCHOFIELD A, WROTH P.Critical state soil mechanics[M]. London: McGRAW-HILL, 1968.
    [10] 姚仰平. UH模型系列研究[J]. 岩土工程学报, 2015, 37(2): 193-217.
    (YAO Yang-ping.Advanced UH models for soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 193-217. (in Chinese))
    [11] TERZAGHI V K.Theoretical soil mechanics[M]. New York: Wiley, 1943.
    [12] 刘艳, 赵成刚, 蔡国庆. 理性土力学与热力学[M]. 北京:科学出版社, 2016.
    (LIU Yan, ZHAO Cheng-gang, CAI Guo-qing.Rational soil mechanics and thermodynamics[M]. Beijing: Science Press, 2016. (in Chinese))
    [13] 赵成刚, 白冰. 土力学原理[M]. 2版. 北京: 清华大学出版社, 北京交通大学出版社, 2017: 2-3, 53.
    (ZHAO Cheng-gang, BAI Bing.Fundamentals of soil mechanics[M]. 2nd ed. Beijing: Tsinghua University Press, Beijing Jiaotong University Press, 2017: 2-3, 53. (in Chinese))
    [14] 李广信, 张丙印, 于玉贞. 土力学[M]. 2版. 北京: 清华大学出版社, 2013.
    (LI Guang-xin, ZHANG Bing-yin, YU Yu-zhen.Soil mechanics[M]. 2nd ed. Beijing: Tsinghua University Press, 2013. (in Chinese))
    [15] LI X S, DAFALIAS Y F, WANG Z L.State-dependent dilatancy in critical-state constitutive modeling of sand[J]. Canadian Geotechnical Journal, 1999, 36(4): 599-611.
    [16] WHITMAN R V.Some considerations and data regarding the shear strength of clays[M]// ASCE, Soil Mechanics and Foundations Division, Research Conference on Shear Strength of Cohesive Soil. Colorado, 1960: 581-614.
    [17] DUNCAN J M.Limitations of conventional analysis of consolidation settlement[J]. Journal of Geotechnical Engineering, ASCE, 1993, 119(9): 1333-1359.
    [18] WROTH C P, HOULSBY G T.Soil mechanics-property characterization and analysis procedures[C]// Proceedings of the 11th International Conference on Soil Mechanics and Foundations Engineering. San Francisco, 1985: 1-55.
    [19] VAUGHAN P R.Assumption, prediction and reality in geotechnical engineering[J]. Géotechnique, 1994, 44(4): 573-609.
    [20] GIBBS H J. shear strength of cohesive soils[C]// ASCE, Soil Mechanics and Foundations Division, Research Conference on Shear Strength of Cohesive Soil. Colorado, 1960: 33-162.
    [21] SKEMPTON A W.Effective stress in soils, concrete and rocks[M]// London: Selected Papers on Soil Mechanics. Thomas Telford, 1984: 106-118.
    [22] 邵龙潭, 郭晓霞. 有效应力新解[M]. 北京: 中国水利水电出版社, 2014.
    (SHAO Long-tan, GUO Xiao-xia.The new solution for effective stress[M]. Beijing: China Water Power Press, 2014. (in Chinese))
    [23] GONÇALVÈS J, ROUSSEAU-GUEUTIN P, DE MARSILY G, et al. What is the significance of pore pressure in a saturated shale layer?[J/OL]. Water Resources Research, 2010, 46(4), W04514. DOI: 10.1029/ 2009WR008090.
    [24] MITCHELL J K, SOGA K.Fundamentals of soil behavior[M]. 3rd ed. New Jersey: John Wiley & Sons, Inc, 2005.
    [25] NUTH M, LALOUI L.Effective stress concept in unsaturated soils: clarification and validation of a unified framework[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(7): 771-801.
    [26] BISHOP A W.The principle of effective stress[J]. Teknisk Ukeblad, 1959,106(39): 859-863.
    [27] BISHOP A W, BLIGHT G E.Some aspects of the effective stress in saturated and partially saturated soils[J]. Géotechnique, 1963, 13(3): 177-197.
    [28] 赵成刚, 刘真真, 李舰, 等. 土力学有效应力及其作用的讨论[J]. 力学学报, 2015, 47(2): 356-361.
    (ZHAO Cheng-gang, LIU Zhen-zhen, LI Jian, et al.Effective stress in soil mechanics and the discussions about its functions[J]. Chinese Journal of .Theoretical and Applied Mechanics, 2015, 47(2): 356-361. (in Chinese))
    [29] LU N, LIKOS W J.Suction stress characteristic curve for unsaturated soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(2): 131-142.
    [30] COLEMAN J D.Stress-strain relations for partly saturated soils[J]. Correspondence to Geotechnique,1962, 12(4): 348-350.
    [31] BLIGHT G E.Effective stress evaluation for unsaturated soils[J]. Journal of the Soil Mechanics and Foundations Division (ASCE), 1967, 93(SM2): 125-148.
    [32] FRELUND D G, MORGENSTERN N R.Stress state variables for unsaturated soils[J]. Journal of Geotechnical Engineering Division (ASCE), 1977, 103(5): 447-466.
    [33] 刘艳, 赵成刚, 蔡国庆, 等. 非饱和土力学理论的研究进展[J]. 力学与实践, 2015, 37(4): 457-465.
    (LIU Yan, ZHAO Cheng-gang, CAI Guo-qing, et al.Research progress of unsaturated soil mechanics[J]. Mechanics in Engineering, 2015, 37(4): 457-465. (in Chinese))
    [34] LU N, KHORSHIDI M.Mechanisms for soil-water retention and hysteresis at high suction range[J/OL]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(8): 04015032. DOI: 10.1061/(ASCE)GT.1943-5606. 0001524.
    [35] 陈正汉, 秦冰. 非饱和土应力状态变量的研究[J]. 岩土力学,2012, 33(1): 1-11.
    (CHEN Zheng-han, QIN Bing.On stress state variables of unsaturated soils[J]. Rock and Soil Mechanics, 2012, 33(1): 1-11. (in Chinese))
    [36] 赵成刚, 韦昌富, 蔡国庆. 土力学理论的发展和面临的挑战[J]. 岩土力学, 2011, 32(12): 3521-3540.
    (ZHAO Cheng-gang, WEI Chang-fu, CAI Guo-qing.Development and challenge for soil mechanics[J]. Rock and Soil Mechanics, 2011, 32(12): 3521-3540. (in Chinese))
    [37] 蔡正银, 李相菘. 砂土的剪胀理论及其本构模型的发展[J]. 岩土工程学报, 2007, 29(8): 1122-1128.
    (CAI Zheng-yin, LI Xiang-song.Development of dilatancy theory and constitutive model of sand[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1122-1128. (in Chinese))
    [38] LI X S, DAFALIAS Y F.Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460.
    [39] 徐日庆, 龚慈, 魏刚, 等. 考虑平动位移效应的刚性挡土墙土压力理论[J]. 浙江大学学报(工学版), 2005, 39(1): 119-122.
    (XU Ri-qing, GONG Ci, WEI Gang, et al.Theory of earth pressure against rigid retaining walls considering translational movement effect[J]. Journal of Zhejiang University (Engineering Science), 2005, 39(1): 119-122. (in Chinese))
    [40] 宋飞, 张建民. 考虑挡墙位移效应的被动侧土压力计算方法[J]. 岩土力学, 2011, 32(1): 151-157.
    (SONG Fei, ZHANG Jian-min.Computational method of earth pressure at passive side considering wall displacement effect[J]. Rock and Soil Mechanics, 2011, 32(1): 151-157. (in Chinese))
    [41] 卢国胜. 考虑位移的土压力计算方法[J]. 岩土力学, 2004, 25(4): 586-589.
    (LU Guo-sheng.A calculation method of earth pressure considering displacement[J]. Rock and Soil Mechanics, 2004, 25(4): 586-589. (in Chinese))
    [42] 谢定义. 非饱和土力学[M]. 北京: 高等教育出版社, 2015.
    (XIE Ding-yi.Soil mechanics for unsaturated soils[M]. Beijing: Higher Education Press, 2015. (in Chinese))
  • 期刊类型引用(41)

    1. 侯瑞彬,潘逸尘,董云瑶,付宇廷,刘蒙蒙. 2023年甘肃积石山M_S6.2地震密集观测记录的区域性差异分析. 世界地震工程. 2025(02): 12-20 . 百度学术
    2. 常晁瑜,乔峰,薄景山,绽蓓蕾,谷佳沛,李昊宇,田华俊. 甘肃积石山6.2级地震诱发中川乡流滑成因初探. 防灾减灾工程学报. 2025(02): 349-356 . 百度学术
    3. 王兰民,许世阳,王平,王睿,车爱兰,周燕国,吴志坚,王谦,蒲小武,柴少峰,马星宇. 2023年积石山6.2级地震诱发大规模黄土液化流滑的特征与启示. 岩土工程学报. 2024(02): 235-243 . 本站查看
    4. 刘港,贾俊,张戈,洪勃,董英,裴赢,薛强,高波. 甘肃积石山地震液化型泥流特征、成因及其对黄河上游盆地地震次生灾害风险评估的启示. 西北地质. 2024(02): 220-229 . 百度学术
    5. 王睿,王兰民,周燕国,王刚. 土动力学与岩土地震工程. 土木工程学报. 2024(07): 71-89+105 . 百度学术
    6. 潘建磊,梁庆国,刘海生,时伟,王丽丽. 黄土液化作用及其次生灾害风险评估方法初探——以积石山M_S6.2地震为例. 地震工程学报. 2024(04): 836-845 . 百度学术
    7. 袁近远,崔家伟,李兆焱,袁晓铭,张钰洋. 中国模式下砾性土液化指数评价新方法. 土木工程学报. 2024(09): 98-108 . 百度学术
    8. 葛一荀,张洁,黄宏伟. 基于贝叶斯分层模型的液化侧移稳健的易损性分析方法. 同济大学学报(自然科学版). 2024(11): 1658-1669 . 百度学术
    9. 钱法桥,邓亚虹,刘凡,门欢. 黄土地震滑坡研究综述与展望. 中国地质灾害与防治学报. 2024(05): 5-20 . 百度学术
    10. 袁近远,苏安双,陈龙伟,许成顺,王淼,袁晓铭,张思宇. 基于剪切波速的砾性土液化概率计算的中国方法. 岩土力学. 2024(11): 3378-3387+3415 . 百度学术
    11. 袁近远,王兰民,汪云龙,袁晓铭. 不同设防水准下场地液化震害风险差异性研究. 岩石力学与工程学报. 2023(01): 246-260 . 百度学术
    12. 代言,邓龙胜,毛伟,范文,李培. 马兰黄土液化特性及孔压模型参数研究. 地震工程学报. 2023(02): 338-345+361 . 百度学术
    13. 隆然,刘兴东. 基于致灾机理分析的公路滑坡稳定性评价及治理方案研究. 铁道勘察. 2023(02): 33-37 . 百度学术
    14. 贾科敏,许成顺,杜修力,张小玲,宋佳,苏卓林. 可液化倾斜场地的侧向扩展机制分析. 岩土力学. 2023(06): 1837-1848 . 百度学术
    15. 罗增文,苏卓林,贾科敏,许成顺. 地震作用下碎石桩场地侧向位移规律研究. 震灾防御技术. 2023(02): 361-368 . 百度学术
    16. 王兰民,柴少峰,薄景山,王平,许世阳,李孝波,蒲小武. 黄土地震滑坡的触发类型、特征与成灾机制. 岩土工程学报. 2023(08): 1543-1554 . 本站查看
    17. 李孝波,欧阳刚垒,宋霖君,吴义文,徐建元. 黄土高原地区场地设计反应谱特征周期研究. 地震工程学报. 2023(05): 1161-1170 . 百度学术
    18. 柴少峰,王兰民,王平,郭海涛,夏晓雨,车高凤,王会娟. 石碑塬低角度黄土地层液化滑移特征与机理振动台试验研究. 岩土工程学报. 2023(12): 2565-2574 . 本站查看
    19. 马为功,王兰民,许世阳,李登科,柴少峰. 饱和黄土隧道围岩地震液化特征的振动台试验研究. 岩土工程学报. 2023(S2): 171-176 . 本站查看
    20. 李泊良,张帆宇. 降雨和地震条件下浅层黄土滑坡三维稳定性评价. 工程科学学报. 2022(03): 440-450 . 百度学术
    21. 程超,钟秀梅,刘钊钊,刘富强,江志杰,王谦,陶冬旺. 饱和黄土动态液化和静态液化机理的差异性研究. 地震工程学报. 2022(01): 136-144 . 百度学术
    22. 袁近远,李天宁,王兰民,汪云龙,陈龙伟,李兆焱,袁晓铭,王永志,陈卓识,李瑞山. 砂土液化概率计算新方法. 岩土工程学报. 2022(03): 541-549 . 本站查看
    23. 王谦,钟秀梅,高中南,马金莲,万秀红,杨义煊,刘岸果. 门源M6.9地震诱发地质灾害特征研究. 地震工程学报. 2022(02): 352-359 . 百度学术
    24. 葛一荀,张洁,祝刘文,程小久,廖先斌,汪华安,孔明,郑文棠,王占华. 砂土场地国标与美标标准贯入试验能量分析及击数转换关系研究. 工程地质学报. 2022(02): 507-519 . 百度学术
    25. 包含,马扬帆,兰恒星,彭建兵,张科科,许江波,晏长根,孙强. 基于微结构量化的含渐变带黄土各向异性特征研究. 中国公路学报. 2022(10): 88-99 . 百度学术
    26. 苏卓林,贾科敏,许成顺,豆鹏飞,张小玲. 双向地震作用下液化水平和倾斜场地-桩基-桥梁结构地震反应的差异研究. 地震科学进展. 2022(11): 505-512 . 百度学术
    27. 宋洋,刘思源,王晨炟. 含水率和干湿循环对原状黄土变形特性的影响. 辽宁工程技术大学学报(自然科学版). 2021(02): 148-155 . 百度学术
    28. 王玉峰,林棋文,李坤,史安文,李天话,程谦恭. 高速远程滑坡动力学研究进展. 地球科学与环境学报. 2021(01): 164-181 . 百度学术
    29. 颜灵勇,李孝波,欧阳刚垒. 黄土地震滑坡形成机理研究的若干进展. 防灾科技学院学报. 2021(02): 46-53 . 百度学术
    30. 马星宇,王兰民,王谦,王平,钟秀梅,蒲小武,刘富强. 饱和黄土液化流动性试验研究. 岩土工程学报. 2021(S1): 161-165 . 本站查看
    31. 袁晓铭,费扬,陈龙伟,袁近远,陈同之,张思宇,王义德. 含剧烈地震动作用不同埋深砂土液化判别统一公式. 岩石力学与工程学报. 2021(10): 2101-2112 . 百度学术
    32. 李旭东,王平,王丽丽,王会娟,常文斌,钱紫玲. 强震作用下坡顶建筑荷载对边坡稳定性影响研究. 地震工程学报. 2021(05): 1220-1227 . 百度学术
    33. 张子东,张晓超,任鹏,崔雪婷. 非饱和黄土动力液化研究——以党家岔滑坡为例. 地震工程学报. 2021(05): 1228-1237 . 百度学术
    34. 许成顺,贾科敏,杜修力,王志华,宋佳,张小玲. 液化侧向扩展场地-桩基础抗震研究综述. 防灾减灾工程学报. 2021(04): 768-791 . 百度学术
    35. 马晓文,梁庆国,赵涛,周稳弟. 土动力学研究综述及思考. 世界地震工程. 2021(04): 217-230 . 百度学术
    36. 许成顺,王冰,杜修力,岳冲,杨钰荣. 循环加载频率对砂土液化模式的影响试验研究. 土木工程学报. 2021(11): 109-118 . 百度学术
    37. 郭海涛,许世阳,蒲小武,张晓军,马星宇. 海原地震石碑塬液化滑移地表特征形成机制探讨. 地震工程学报. 2020(05): 1159-1164 . 百度学术
    38. 杨博,田文通,孙军杰,刘琨,徐舜华. 海原大地震诱发石碑塬黄土滑坡机制探讨. 地震工程学报. 2020(05): 1165-1172 . 百度学术
    39. 马星宇,王兰民,钟秀梅,蒲小武,刘富强,王谦. 地震诱发石碑塬黄土地层液化滑移距离研究. 地震工程学报. 2020(06): 1674-1682 . 百度学术
    40. 车福东,王涛,辛鹏,张泽林,梁昌玉,刘甲美. 近远震作用下黄土滑坡动力响应与变形——以甘肃天水震区黎坪村滑坡为例. 地质通报. 2020(12): 1981-1992 . 百度学术
    41. MA Xingyu,WANG Lanmin,WANG Qian,WANG Ping,ZHONG Xiumei,PU Xiaowu,LIU Fuqiang,XU Xiaowei. Flow Characteristics of Large-Scale Liquefaction-Slip of the Loess Strata in Shibei Tableland, Guyuan City, Induced by the 1920 Haiyuan M8(1/2) Earthquake. Earthquake Research in China. 2020(04): 469-481 . 必应学术

    其他类型引用(32)

计量
  • 文章访问数:  599
  • HTML全文浏览量:  23
  • PDF下载量:  541
  • 被引次数: 73
出版历程
  • 收稿日期:  2017-09-10
  • 发布日期:  2018-08-24

目录

    /

    返回文章
    返回