• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

砾性土层液化的触发条件

袁晓铭, 秦志光, 刘荟达, 曹振中, 徐鸿轩

袁晓铭, 秦志光, 刘荟达, 曹振中, 徐鸿轩. 砾性土层液化的触发条件[J]. 岩土工程学报, 2018, 40(5): 777-785. DOI: 10.11779/CJGE201805001
引用本文: 袁晓铭, 秦志光, 刘荟达, 曹振中, 徐鸿轩. 砾性土层液化的触发条件[J]. 岩土工程学报, 2018, 40(5): 777-785. DOI: 10.11779/CJGE201805001
YUAN Xiao-ming, QIN Zhi-guang, LIU Hui-da, CAO Zhen-zhong, XU Hong-xuan. Necessary trigger conditions of liquefaction for gravelly soil layers[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 777-785. DOI: 10.11779/CJGE201805001
Citation: YUAN Xiao-ming, QIN Zhi-guang, LIU Hui-da, CAO Zhen-zhong, XU Hong-xuan. Necessary trigger conditions of liquefaction for gravelly soil layers[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 777-785. DOI: 10.11779/CJGE201805001

砾性土层液化的触发条件  English Version

详细信息
    作者简介:

    袁晓铭(1963- ),男,研究员,主要从事岩土地震工程研究。E-mail: yxmiem@163.com。

Necessary trigger conditions of liquefaction for gravelly soil layers

  • 摘要: 天然沉积砾性土场地液化是一个超出现有认识与现有规范的新问题,其触发条件至关重要,从震害现场调查提炼出相关认识最为可靠,是后续研究的基础和导引。鉴于2008年汶川地震砾性土液化规模远超以往,以其调查结果为主,综合历史砾性土液化全部资料,提出砾性土层液化的触发条件。现有资料分析表明:0.15g应为触发天然沉积砾性土层液化的地表最低地震强度,大规模砾性土层液化发生则需要0.2g~0.4g(Ⅷ度区)的地震强度;松散和接近松散状态是天然砾性土层液化的基本条件,液化砾性土密实度可随地震强度增大而增高但仍以稍密状态为上限;液化砾性土含砾量可达85%及更大,并且不随地震强度减弱而降低;高剪切波速天然砾性土层会发生液化,砾性土与砂土密实程度的剪切波速分界线相差悬殊,砂土液化判别公式不适于砾性土层;上覆渗透性差非液化土层(帽子)的存在是地下砾性土层可发生液化的必要条件,可称为帽子效应,此厚度至少应为0.5 m;地下水位与帽子间不能有过厚的可排水层间隙也是下卧砾性土层可发生液化的必要条件,可称为间隙效应,此间隙上限可取为2.0 m;区别于砂土液化判别方法,砾性土液化判别需要埋藏条件方面的特殊要求,否则容易出现误判。
    Abstract: The liquefaction of the natural gravelly soils is a new problem beyond the existing awareness and codes, and the trigger conditions of liquefaction are critical. It is the most reliable to extract the relevant knowledge from field investigation of earthquake damages. In view of the world's largest scale of gravelly soil liquefaction in the 2008 Wenchuan earthquake, using the post-earthquake field investigation data from the meizoseismal area in the Wenchuan earthquake and the historical documents on liquefaction of gravelly soils in the world, the necessary trigger conditions for liquefaction of gravelly soils and the relevant characteristic parameters are studied. The analytical results indicate: (1) The minimum ground shaking of 0.15g is essential to trigger liquefaction of natural gravelly soils, yet the liquefaction of massive gravelly soils requires 0.20g to 0.40g of ground shaking intensity; (2) The most natural gravelly soil layers are very loose. Even though the gravelly soils can be compacted with the increasing ground shaking, the compacted gravelly soils are still slightly dense. (3) The gravel contents of the liquefied soils can reach 85% and even larger in reality, and they do not decrease with the decreasing seismic intensity; (4) The layers of gravelly soils with high shear wave velocity can be liquefied. The shear wave velocities dividing different compactions for sands and gravels are different, and the liquefaction evaluation methods for sand cannot be applied in gravelly soils. (5) The existence of a cap of overburden low- permeability and a non-liquefiable layer with minimum 0.5 m in thickness is a necessary condition for possibility of liquefaction of gravelly soils, which can be defined as the cap effect. (6) The gap for drainage between the underground water table and the overburden cohesive layer cannot be large, which is another necessary condition for possible occurrence of liquefaction of gravelly soils, and the thickness should be less than 2.0 m, which can be defined as the gap effect. (7) Different from liquefaction evaluation of sandy soils, the buried conditions of layers of gravelly soils must be considered in liquefaction evaluation, otherwise the liquefaction possibility of sites is easily misjudged.
  • [1] 陈龙伟, 袁晓铭, 孙 锐. 2011年新西兰Mw6.3地震液化及岩土震害评述[J]. 世界地震工程, 2013, 29(3): 1-9. (CHEN Long-wei, YUAN Xiao-ming, SUN Rui. Review of liquefaction phenomena and geotechnical damage in the 2011 New Zealand Mw6.3 earthquake[J]. World Earthquake Engineering, 2013, 29(3): 1-9. (in Chinese))
    [2] 李兆焱, 袁晓铭. 2016年台湾高雄地震场地效应及砂土液化破坏概述[J]. 世界地震工程, 2016, 32(3): 1-7. (LI Zhao-yan, YUAN Xiao-ming. Seismic damage summarize of site effect and soil liquefaction in 2016 Kaohsiung earthquake[J]. World Earthquake Engineering, 2016, 32(3): 1-7. (in Chinese))
    [3] 谢定义. 土动力学[M]. 北京: 高等教育出版社, 2011. (XIE Ding-yi. Soil dynamics[M]. Beijing: China Higher Education Press, 2011. (in Chinese))
    [4] KOESTER P J, DANIEL C, ANDERSON M. In situ investigation of liquefied gravels at Seward, Alaska[J]. Innovations and Applications in Geotechnical Site Characterization, 2000, GSP 97: 33-48.
    [5] LIN P, CHANG C, CHANG W. Characterization of liquefaction resistance in gravelly soil: large hammer penetration test and shear wave velocity approach[J]. Soil Dynamics and Earthquake Engineering, 2004(24): 675-687.
    [6] WONG R T, SEED H B, CHAN C K. Liquefaction of gravelly soils under cyclic loading conditions[R]. Report No. UCB/EERC-74/11. Berkeley: University of California, Berkeley, 1974.
    [7] 王昆耀, 常亚屏, 陈 宁. 饱和砂砾料液化特性的试验研究[J]. 水利学报, 2000(2): 37-41. (WANG Kun-yao, CHANG Ya-ping, CHEN Ning. Experimental study on liquefaction characteristics of saturated sandy gravel[J]. Journal of Hydraulic Engineering, 2000(2): 37-41. (in Chinese))
    [8] 王志华, 周恩全, 吕 丛, 等. 基于流动性的饱和砂砾土液化机理[J]. 岩土工程学报, 2013, 35(10): 1816-1822. (WANG Zhi-hua, ZHOU En-quan, LÜ Cong, et al. Liquefaction mechanism of saturated gravelly soils based on flowing property[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1816-1822. (in Chinese))
    [9] 陈国兴, 孙 田, 王炳辉, 等. 循环荷载作用下饱和砂砾土的破坏机理与动强度[J]. 岩土工程学报, 2015, 37(12): 2140-2147. (CHEN Guo-xing, SUN Tian, WANG Bing-hui, et al. Undrained cyclic failure mechanism and resistance of saturated sand-gravel mixtures[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2140-2147. (in Chinese))
    [10] 康 飞, 彭 涛, 杨秀萍. 基于剪切波速与神经网络的砂砾土地震液化判别[J]. 地震工程与工程振动, 2014, 31(1): 110-116. (KANG Fei, PENG Tao, YANG Xiu-ping. Gravel soil liquefaction evaluation using artificial neural networks with shear wave velocity[J]. Earthquake Engineering and Engineering Vibration, 2014, 31(1): 110-116. (in Chinese))
    [11] EVANS D M, SEED H B. Undrained cyclic triaxial testing of gravels-the effect of membrane compliance[R]. Report No. UCB/EERC-87/08. Berkeley: University of California, 1987.
    [12] EVANS D M, ZHOU Sheng-ping. Liquefaction behavior of sand-gravel composites[J]. Journal of Geotechnical Engineering, 1995, 121(3): 287-298.
    [13] 袁晓铭, 曹振中. 砂砾层液化判别的基本方法及计算公式,岩土工程学报, 2011, 33(4): 509-519. (YUAN Xiao-ming, CAO Zhen-zhong. Fundamental method and calculational formula for evaluation of gravel soils liquefaction[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 509-519. (in Chinese))
    [14] 曹振中, 袁晓铭. 砂砾层液化的剪切波速判别方法[J]. 岩石力学与工程学报, 2010, 29(5): 943-951. (CAO Zhen-zhong, YUAN Xiao-ming. Shear waves velocity-based approach for evaluation gravel soils liquefaction[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 943-951. (in Chinese))
    [15] 曹振中, 袁晓铭. 砾性土液化原理与判别技术——以汶川8.0级地震为背景[M]. 北京: 科学出版社, 2015. (CAO Zhen-zhong, YUAN Xiao-ming. Principle and evaluation technique of gravelly soils liquefaction[M]. Beijing: Science Press, 2015. (in Chinese))
    [16] 地球科学大词典编委会. 地球科学大词典[M]. 北京: 地质出版社, 2005. (Earth Science Dictionary Committee. Earth science dictionary[M]. Beijing: Geological Publishing House, 2005. (in Chinese))
    [17] 汪云龙, 袁晓铭, 陈龙伟. 基于弯曲元技术的无黏性土剪切波速与相对密度联合测试方法[J]. 岩石力学与工程学报, 2016, 35(增刊1): 3418-3423. (WANG Yun-long, YUAN Xiao-ming, CHEN Long-wei. A measurement method for the relationship between shear wave velocity and relative density of cohesionless soils using Bender Elements technique[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S1): 3418-3423. (in Chinese))
    [18] 中国科学院工程力学研究所. 海城地震震害[M]. 北京:地震出版社, 1979. (Institute of Engineering Mechanics. The Haicheng earthquake damages[M]. Beijing: Seismological Press, 1979. (in Chinese))
    [19] 刘令瑶, 李桂芬, 丙东屏. 密云水库白河主坝保护层地震破坏及砂料振动液化特性[M]// 水利水电科学研究院论文集第8集(岩土工程). 北京: 水利出版社, 1982: 46-54. (LIU Ling-yao, LI Gui-fen, BING Dong-ping. Earthquake damage of Baihe Dam and liquefaction characteristics of sand and gravel materials[M]// Volume 8 Collected Papers of China Institute of Water Resources and Hydropower Research. Beijing: China Waterpower Press, 1982: 46-54. (in Chinese))
    [20] 汪闻韶, 常亚屏, 左秀泓. 饱和砂砾料在振动和往返加荷下的液化特性[M]// 水利水电科学研究院论文集第23集. 北京: 水利出版社, 1986: 195-203. (WANG Wen-shao, CHANG Ya-ping, ZUO Xiu-hong. Liquefaction characteristics of saturated sand-gravels under vibration and cyclic loading[M]// Volume 23 Collected Papers of China Institute of Water Resources and Hydropower Research, Beijing: China Waterpower Press, 1986: 195-203. (in Chinese))
    [21] SIROVICH L. Repetitive liquefaction at a gravelly site and liquefaction in overconsolidated sands[J]. Soils and Foundations, 1996, 36(4): 23-34.
    [22] YOUD T L, HARP E L, KEEFER D K, et al. The borah peak, idaho earthquake of October 28, 1983 Liquefaction[J]. Earthquake Spectra, 1985, 2(1): 71-89.
    [23] YEGIAN M K, GHAHRAMAN V G, HARUTIUNYAN R N. Liquefaction and embankment failure case histories, 1988 Armenia Earthquake[J]. Journal of Geotechnical Engineering, 1994, 120(3): 581-596.
    [24] KOKUSHO T, TANAKA Y, KAWAI T, et al. Case study of rock debris avalanche gravel liquefaction during 1993 Hokkaido-Nansei-Oki earthquake[J]. Soils and Foundations, 1995, 35(3): 83-95.
    [25] HATANAKA M, UCHIDA A, OHARA J. Liquefaction characteristics of a gravelly fill liquefied during the 1995 Hyogo-Ken Nanbu Earthquake[J]. Soils and Foundations, 1997, 37(3): 107-115.
  • 期刊类型引用(8)

    1. 刘华仁,佟大威,余佳,苏哲. 基于模糊聚类和随机子空间的高土石坝模态参数自动识别. 水力发电学报. 2025(02): 107-115 . 百度学术
    2. 蔡正银,范开放,朱洵. 基于现场试验的海上筒型基础风电结构动力特性研究. 岩土工程学报. 2025(03): 443-452 . 本站查看
    3. 张翰,张锋,谭尧升,姚孟迪,邓检华. 基于运行时模态分析和代理模型的大坝力学参数反演方法. 粉煤灰综合利用. 2025(01): 163-166 . 百度学术
    4. 张晓明,谭蓉,贺育明,强继峰,孙森林,张朝军,梁刚. 基于时频域信号特征的输电塔运行模态分析. 电网与清洁能源. 2025(03): 46-52+59 . 百度学术
    5. 王晓澎,张浩,李欣,肖森,刘璇. 基于随机子空间法的滑动轴承运行模态参数识别. 噪声与振动控制. 2024(01): 126-133 . 百度学术
    6. 樊圆,卢文胜,虞终军,任祥香. 多次地震作用下高层建筑结构动力特性识别和响应分析. 建筑结构学报. 2023(01): 225-234 . 百度学术
    7. 翟世龙,刘萍,黄静,艾萨·伊斯马伊力,毛玉剑. 基于大坝地震反应台阵的土石坝模态参数识别. 内陆地震. 2023(04): 353-361 . 百度学术
    8. 黄嘉思,徐文城,段元锋,章红梅. 基于随机子空间方法的向量式有限元索网模型模态识别. 结构工程师. 2022(06): 1-6 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 15
出版历程
  • 修回日期:  2017-02-20
  • 发布日期:  2018-05-24

目录

    /

    返回文章
    返回