• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

泥浆真空抽滤泥水分离中堵塞机理及规律性研究

吴思麟, 朱伟, 闵凡路, 张春雷, 魏代伟

吴思麟, 朱伟, 闵凡路, 张春雷, 魏代伟. 泥浆真空抽滤泥水分离中堵塞机理及规律性研究[J]. 岩土工程学报, 2017, 39(8): 1530-1537. DOI: 10.11779/CJGE201708022
引用本文: 吴思麟, 朱伟, 闵凡路, 张春雷, 魏代伟. 泥浆真空抽滤泥水分离中堵塞机理及规律性研究[J]. 岩土工程学报, 2017, 39(8): 1530-1537. DOI: 10.11779/CJGE201708022
WU Si-lin, ZHU Wei, MIN Fan-lu, ZHANG Chun-lei, WEI Dai-wei. Clogging mechanism and effect of cake permeability in soil-water separation using vacuum filtration[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1530-1537. DOI: 10.11779/CJGE201708022
Citation: WU Si-lin, ZHU Wei, MIN Fan-lu, ZHANG Chun-lei, WEI Dai-wei. Clogging mechanism and effect of cake permeability in soil-water separation using vacuum filtration[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1530-1537. DOI: 10.11779/CJGE201708022

泥浆真空抽滤泥水分离中堵塞机理及规律性研究  English Version

基金项目: 国家重点基础研究发展计划(“973”计划)项目(2015CB057803); 国家科技重大专项(2013ZX07113001); 科技基
详细信息
    作者简介:

    吴思麟(1992- ),男,博士研究生,主要从事环境岩土等方面的研究工作。E-mail: wusilinhhu@126.com。

Clogging mechanism and effect of cake permeability in soil-water separation using vacuum filtration

  • 摘要: 河湖底泥的疏浚工程因为使用绞吸式的疏浚方式,底泥与水混合后变成大量高含水率的泥浆。为了减少泥浆的体积,对泥水进行分离就显得非常重要。在将泥浆中水分抽滤分离的过程中,经常会发生堵塞,产生了抽滤效果低,抽滤不能持续的问题。针对这一问题,研究了不同泥浆粒径分布、泥浆的初始含水率、土工布的孔径、真空负压以及添加絮凝剂对泥水分离效果的影响,探讨了堵塞的机理。发现了由土工布过滤形成的泥皮的渗透系数将成为制约脱水效果的主要因素,当形成堵塞性泥皮时,其他因素如土工布的孔径、泥浆初始含水率等对脱水的影响可以忽略。添加絮凝剂会使颗粒聚团从而提高泥皮渗透系数是泥水分离变好的原因,并且絮凝泥浆中较小的团粒粒径决定了泥皮的渗透系数,因此可以通过检测絮凝后泥浆中较小团粒的粒径如D10,D15,D20的方式比选絮凝剂、决定最优添加量、预测脱水效果。添加絮凝剂对泥浆中结合水含量的改变影响较小,因此认为絮凝使水分结合方式的改变并不影响泥水分离的效果。
    Abstract: The cutter suction dredger is often used in dredging of rivers and lakes. The core of this method of dredging is to extract the mixture of sediment and water after the agitating process. It usually results in large residue of high water content slurry, which must be reduced through soil-water separation process. However, the clogging problem often occurs in the process of the soil-water separation, resulting in lower efficiency of dewatering. To solve this problem, the vacuum filtration tests are carried out to explore the related factors within the separation process. These factors include particle-size distribution of the slurry, initial water content of the slurry, pore size of the geotextiles and vacuum pressure, which might explain the cause mechanism of the clogging. The results indicate that the permeability of the cake accumulated on the surface of geotextiles is the major factor influencing the soil-water separation. When the permeability of cake is low, it comes to clog, and other factors are ignored. The permeability of the cake increases due to the particle aggregation caused by the addition of the flocculants, which improve the effects of separation. What is more, the smaller flocs dominate the permeability of the cake. Therefore the parameters of the smaller flocs such as D10, D15 and D20 will help select better flocculants and dosages, or predict the separation process of slurry. The addition of the flocculants barely alters the bound water content. Thus, when assessing the effects of soil-water separation, the bound water should not be considered.
  • [1] 朱 伟, 张春雷, 刘汉龙, 等. 疏浚泥处理再生资源技术的现状[J]. 环境科学与技术, 2002, 25(4): 39-41. (ZHU Wei, ZHANG Chun-lei, LIU Han-long. The status quo of dredged spoils utilization[J]. Environmental Science & Technology, 2002, 25(4): 39-41. (in Chinese))
    [2] 徐 元, 朱 治. 长江口深水航道治理工程疏浚土综合利用[J]. 水运工程, 2009(4): 127-133. (XU Yuan, ZHU Zhi. Study and practice of comprehensive utilization of dredging soil of the Yangtze Estuary Deepwater Channel Engineering[J]. Port & Waterway Engineering, 2009(4): 127-133. (in Chinese))
    [3] YEE T W, LAWSON C R, WANG Z Y, et al. Geotextile tube dewatering of contaminated sediments, Tianjin Eco-City, China[J]. Geotextiles & Geomembranes, 2011, 31(4): 39-50.
    [4] MORI H, MIKI H, TSUNEOKA N. The geo-tube method for dioxin-contaminated soil[J]. Geotextiles & Geomembranes, 2002, 20(5): 281-288.
    [5] LAWSON C R, KUWANO J, KOSEKI J. Geotextile containment for hydraulic and environmental engineering[J]. Geosynthetics International, 2008, 15(6): 384-427.
    [6] 俞亚南, 张仪萍. 杭州西湖疏浚底泥工程性质试验研究[J]. 岩土力学, 2004, 25(4): 579-582. (YU Ya-nan, ZHANG Yi-ping. Test study on engineering properties of dredging soil of West lake in Hangzhou[J]. Rock And Soil Mechanics, 2004, 25(4): 579-582. (in Chinese))
    [7] 黎 荣, 赵新华, 从月宾, 等. 城市河道环保疏浚的试验研究[J]. 水利水电技术, 2004, 35(5): 19-21. (LI Rong, ZHAO Xin-hua, CONG Yue-bin, et al. Experimental study on environmental dredging of a city river[J]. Water Resources And Hydropower Engineering, 2004, 35(5): 19-21. (in Chinese))
    [8] BOURGÈS-GASTAUD S, STOLTZ G, SIDJUI F, et al. Nonwoven geotextiles to filter clayey sludge: An experimental study[J]. Geotextiles & Geomembranes, 2014, 42(3): 214-223.
    [9] 周 源, 高玉峰, 陶 辉, 等. 透气真空快速泥水分离技术对淤泥水分的促排作用[J]. 岩石力学与工程学报, 2010, 29(A01): 3064-3070. (ZHOU Yuan, GAO Yu-feng, TAO Hui. Drainage-Promotion effect of aeration vacuum rapid mud-water separating techinique on dredged sludge[J]. Chinese Journal of Rock Mechanics And Engineering, 2010, 29(A01): 3064-3070. (in Chinese))
    [10] SUITS L D, SHEAHAN T C, KOERNER R M, et al. Performance tests for the selection of fabrics and additives when used as geotextile bags, containers, and tubes[J]. Geotechnical Testing Journal, 2010, 33(3): 236-242.
    [11] BADER R A, BHATIA S K, KHACHAN M M, et al. Cationic starch flocculants as an alternative to synthetic polymers in geotextile tube dewatering[J]. Geosynthetics International, 2014, 21(2): 119-136.
    [12] MAURER B W, GUSTAFSON A C, BHATIA S K, et al. Geotextile dewatering of flocculated, fiber reinforced fly-ash slurry[J]. Fuel, 2012, 97(7): 411-417.
    [13] BHATIA S K, SATYAMURTHY R. Effect of polymer conditioning on dewatering characteristics of fine sediment slurry using geotextiles[J]. Geosynthetics International, 2009, 16: 83-96.
    [14] BHATIA S K, MAURER B W, KHACHAN M M, et al. Performance indices for unidirectional flow conditions considering woven geotextiles and sediment slurries[J]. Ge-Congress, 2013(230): 318-332.
    [15] SMOLLEN M. Evaluation of municipal sludge drying and dewatering with respect to sludge volume reduction[J]. Waterence & Technology, 1990, 22(12): 153-161.
    [16] VESILIND P A. The role of water in sludge dewatering[J]. Water Environment Research, 1994, 66(1): 4-11.
    [17] COLIN F, GAZBAR S. Distribution of water in sludges in relation to their mechanical dewatering[J]. Water Research, 1995, 29(8): 2000-2005.
    [18] MOO-YOUNG H K, TUCKER W R. Evaluation of vacuum filtration testing for geotextile tubes[J]. Geotextiles & Geomembranes, 2002, 20(3): 191-212.
    [19] RATTANAKAWIN C, HOGG R. Aggregate size distributions in flocculation[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2000, 177(2/3): 87-98.
    [20] RASTEIRO M G, GARCIA F A P, FERREIRA P, et al. The use of LDS as a tool to evaluate flocculation mechanisms[J]. Chemical Engineering & Processing, 2008, 47(8): 1323-1332.
    [21] ALAM N, OZDEMIR O, HAMPTON M A, et al. Dewatering of coal plant tailings: Flocculation followed by filtration[J]. Fuel, 2011, 90(1): 26-35.
    [22] ZHU W, ZHANG C L, CHIU A C F. Soil-water transfer mechanism for solidified dredged materials[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2007, 133(5): 588-598.
    [23] GARDNER R, GARDNER R. A method of measuring the capillary tension of soil moisture over a wide moisture range[J]. Soil Science, 1937, 43(43): 277-284.
    [24] SHERARD J L, DUNNIGAN L P, TALBOT J R. Basic properties of sand and gravel filters[J]. Journal of Geotechnical Engineering, 1984, 110(6): 684-700.
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-04
  • 发布日期:  2017-08-24

目录

    /

    返回文章
    返回