Citation: | WU Si-lin, ZHU Wei, MIN Fan-lu, ZHANG Chun-lei, WEI Dai-wei. Clogging mechanism and effect of cake permeability in soil-water separation using vacuum filtration[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1530-1537. DOI: 10.11779/CJGE201708022 |
[1] |
朱 伟, 张春雷, 刘汉龙, 等. 疏浚泥处理再生资源技术的现状[J]. 环境科学与技术, 2002, 25(4): 39-41. (ZHU Wei, ZHANG Chun-lei, LIU Han-long. The status quo of dredged spoils utilization[J]. Environmental Science & Technology, 2002, 25(4): 39-41. (in Chinese))
|
[2] |
徐 元, 朱 治. 长江口深水航道治理工程疏浚土综合利用[J]. 水运工程, 2009(4): 127-133. (XU Yuan, ZHU Zhi. Study and practice of comprehensive utilization of dredging soil of the Yangtze Estuary Deepwater Channel Engineering[J]. Port & Waterway Engineering, 2009(4): 127-133. (in Chinese))
|
[3] |
YEE T W, LAWSON C R, WANG Z Y, et al. Geotextile tube dewatering of contaminated sediments, Tianjin Eco-City, China[J]. Geotextiles & Geomembranes, 2011, 31(4): 39-50.
|
[4] |
MORI H, MIKI H, TSUNEOKA N. The geo-tube method for dioxin-contaminated soil[J]. Geotextiles & Geomembranes, 2002, 20(5): 281-288.
|
[5] |
LAWSON C R, KUWANO J, KOSEKI J. Geotextile containment for hydraulic and environmental engineering[J]. Geosynthetics International, 2008, 15(6): 384-427.
|
[6] |
俞亚南, 张仪萍. 杭州西湖疏浚底泥工程性质试验研究[J]. 岩土力学, 2004, 25(4): 579-582. (YU Ya-nan, ZHANG Yi-ping. Test study on engineering properties of dredging soil of West lake in Hangzhou[J]. Rock And Soil Mechanics, 2004, 25(4): 579-582. (in Chinese))
|
[7] |
黎 荣, 赵新华, 从月宾, 等. 城市河道环保疏浚的试验研究[J]. 水利水电技术, 2004, 35(5): 19-21. (LI Rong, ZHAO Xin-hua, CONG Yue-bin, et al. Experimental study on environmental dredging of a city river[J]. Water Resources And Hydropower Engineering, 2004, 35(5): 19-21. (in Chinese))
|
[8] |
BOURGÈS-GASTAUD S, STOLTZ G, SIDJUI F, et al. Nonwoven geotextiles to filter clayey sludge: An experimental study[J]. Geotextiles & Geomembranes, 2014, 42(3): 214-223.
|
[9] |
周 源, 高玉峰, 陶 辉, 等. 透气真空快速泥水分离技术对淤泥水分的促排作用[J]. 岩石力学与工程学报, 2010, 29(A01): 3064-3070. (ZHOU Yuan, GAO Yu-feng, TAO Hui. Drainage-Promotion effect of aeration vacuum rapid mud-water separating techinique on dredged sludge[J]. Chinese Journal of Rock Mechanics And Engineering, 2010, 29(A01): 3064-3070. (in Chinese))
|
[10] |
SUITS L D, SHEAHAN T C, KOERNER R M, et al. Performance tests for the selection of fabrics and additives when used as geotextile bags, containers, and tubes[J]. Geotechnical Testing Journal, 2010, 33(3): 236-242.
|
[11] |
BADER R A, BHATIA S K, KHACHAN M M, et al. Cationic starch flocculants as an alternative to synthetic polymers in geotextile tube dewatering[J]. Geosynthetics International, 2014, 21(2): 119-136.
|
[12] |
MAURER B W, GUSTAFSON A C, BHATIA S K, et al. Geotextile dewatering of flocculated, fiber reinforced fly-ash slurry[J]. Fuel, 2012, 97(7): 411-417.
|
[13] |
BHATIA S K, SATYAMURTHY R. Effect of polymer conditioning on dewatering characteristics of fine sediment slurry using geotextiles[J]. Geosynthetics International, 2009, 16: 83-96.
|
[14] |
BHATIA S K, MAURER B W, KHACHAN M M, et al. Performance indices for unidirectional flow conditions considering woven geotextiles and sediment slurries[J]. Ge-Congress, 2013(230): 318-332.
|
[15] |
SMOLLEN M. Evaluation of municipal sludge drying and dewatering with respect to sludge volume reduction[J]. Waterence & Technology, 1990, 22(12): 153-161.
|
[16] |
VESILIND P A. The role of water in sludge dewatering[J]. Water Environment Research, 1994, 66(1): 4-11.
|
[17] |
COLIN F, GAZBAR S. Distribution of water in sludges in relation to their mechanical dewatering[J]. Water Research, 1995, 29(8): 2000-2005.
|
[18] |
MOO-YOUNG H K, TUCKER W R. Evaluation of vacuum filtration testing for geotextile tubes[J]. Geotextiles & Geomembranes, 2002, 20(3): 191-212.
|
[19] |
RATTANAKAWIN C, HOGG R. Aggregate size distributions in flocculation[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2000, 177(2/3): 87-98.
|
[20] |
RASTEIRO M G, GARCIA F A P, FERREIRA P, et al. The use of LDS as a tool to evaluate flocculation mechanisms[J]. Chemical Engineering & Processing, 2008, 47(8): 1323-1332.
|
[21] |
ALAM N, OZDEMIR O, HAMPTON M A, et al. Dewatering of coal plant tailings: Flocculation followed by filtration[J]. Fuel, 2011, 90(1): 26-35.
|
[22] |
ZHU W, ZHANG C L, CHIU A C F. Soil-water transfer mechanism for solidified dredged materials[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2007, 133(5): 588-598.
|
[23] |
GARDNER R, GARDNER R. A method of measuring the capillary tension of soil moisture over a wide moisture range[J]. Soil Science, 1937, 43(43): 277-284.
|
[24] |
SHERARD J L, DUNNIGAN L P, TALBOT J R. Basic properties of sand and gravel filters[J]. Journal of Geotechnical Engineering, 1984, 110(6): 684-700.
|
1. |
章青,刘攀勇,顾鑫,乔延赫. 土壤干缩开裂和卷曲分析的数值模型与若干进展Ⅰ:基本方程与网格类数值方法. 水利学报. 2025(01): 42-55 .
![]() | |
2. |
郭鸿,鲁玉妍,李文阳,邹虎金,张彤川,黄芙蓉. 生态纤维改良砂质黏土干缩裂隙试验研究. 水利水运工程学报. 2025(02): 121-127 .
![]() | |
3. |
孙海波,丁佳祺,邓云鹏,吕亚歌,高海彦. 黏土内部边界与含水率下限对干缩裂隙的影响. 科技通报. 2024(05): 65-72 .
![]() | |
4. |
邓云鹏,彭镝,董梅,徐日庆,傅榆涵. 考虑毛细与吸附作用的黏土干缩开裂过程离散元模拟. 岩土工程学报. 2024(08): 1703-1711 .
![]() | |
5. |
冀文雅,李甜,徐向舟,李依杭,郭胜利. 基于稀土元素示踪技术的库岸崩滑土体堆积特征研究. 水资源与水工程学报. 2024(05): 164-171+180 .
![]() | |
6. |
章君政,唐朝生,巩学鹏,周启友,程青,吕超,施斌. 基于高密度电阻率法的土体干缩裂隙动态发育过程精细监测研究. 岩土力学. 2023(02): 392-402 .
![]() | |
7. |
牟文,唐朝生,程青,田本刚,刘伟杰,胡慧聪,施斌. 裂隙对土体水分蒸发过程的影响. 岩土工程学报. 2023(12): 2641-2648 .
![]() | |
8. |
刘瑞琪,雷学文,万勇,刘磊. 含水率梯度作用下填埋场压实黏土层开裂特性试验与机理分析. 力学与实践. 2022(01): 12-21 .
![]() | |
9. |
岳建伟,李嘉乐,王思远,陈颖,邢旋旋,杨雪. 定远营遗址稳定性和微观劣化的研究. 科学技术与工程. 2021(10): 4159-4166 .
![]() | |
10. |
汪时机,骆赵刚,李贤,文桃. 考虑局部含水率效应的浅层土体开裂过程与力学机制分析. 岩土力学. 2021(05): 1395-1403 .
![]() | |
11. |
黎柳坤. 水库土石坝填土料冻融交替下UU试验力学特征影响分析研究. 水利科学与寒区工程. 2021(04): 50-55 .
![]() | |
12. |
王明俊,王朋,柯树炜. 基础沉降对钢型井架承载力及稳定性的影响规律研究. 城市住宅. 2021(09): 193-195+198 .
![]() | |
13. |
唐朝生. 极端气候工程地质:干旱灾害及对策研究进展. 科学通报. 2020(27): 3009-3027+3008 .
![]() |