• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WU Si-lin, ZHU Wei, MIN Fan-lu, ZHANG Chun-lei, WEI Dai-wei. Clogging mechanism and effect of cake permeability in soil-water separation using vacuum filtration[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1530-1537. DOI: 10.11779/CJGE201708022
Citation: WU Si-lin, ZHU Wei, MIN Fan-lu, ZHANG Chun-lei, WEI Dai-wei. Clogging mechanism and effect of cake permeability in soil-water separation using vacuum filtration[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1530-1537. DOI: 10.11779/CJGE201708022

Clogging mechanism and effect of cake permeability in soil-water separation using vacuum filtration

More Information
  • Received Date: August 04, 2016
  • Published Date: August 24, 2017
  • The cutter suction dredger is often used in dredging of rivers and lakes. The core of this method of dredging is to extract the mixture of sediment and water after the agitating process. It usually results in large residue of high water content slurry, which must be reduced through soil-water separation process. However, the clogging problem often occurs in the process of the soil-water separation, resulting in lower efficiency of dewatering. To solve this problem, the vacuum filtration tests are carried out to explore the related factors within the separation process. These factors include particle-size distribution of the slurry, initial water content of the slurry, pore size of the geotextiles and vacuum pressure, which might explain the cause mechanism of the clogging. The results indicate that the permeability of the cake accumulated on the surface of geotextiles is the major factor influencing the soil-water separation. When the permeability of cake is low, it comes to clog, and other factors are ignored. The permeability of the cake increases due to the particle aggregation caused by the addition of the flocculants, which improve the effects of separation. What is more, the smaller flocs dominate the permeability of the cake. Therefore the parameters of the smaller flocs such as D10, D15 and D20 will help select better flocculants and dosages, or predict the separation process of slurry. The addition of the flocculants barely alters the bound water content. Thus, when assessing the effects of soil-water separation, the bound water should not be considered.
  • [1]
    朱 伟, 张春雷, 刘汉龙, 等. 疏浚泥处理再生资源技术的现状[J]. 环境科学与技术, 2002, 25(4): 39-41. (ZHU Wei, ZHANG Chun-lei, LIU Han-long. The status quo of dredged spoils utilization[J]. Environmental Science & Technology, 2002, 25(4): 39-41. (in Chinese))
    [2]
    徐 元, 朱 治. 长江口深水航道治理工程疏浚土综合利用[J]. 水运工程, 2009(4): 127-133. (XU Yuan, ZHU Zhi. Study and practice of comprehensive utilization of dredging soil of the Yangtze Estuary Deepwater Channel Engineering[J]. Port & Waterway Engineering, 2009(4): 127-133. (in Chinese))
    [3]
    YEE T W, LAWSON C R, WANG Z Y, et al. Geotextile tube dewatering of contaminated sediments, Tianjin Eco-City, China[J]. Geotextiles & Geomembranes, 2011, 31(4): 39-50.
    [4]
    MORI H, MIKI H, TSUNEOKA N. The geo-tube method for dioxin-contaminated soil[J]. Geotextiles & Geomembranes, 2002, 20(5): 281-288.
    [5]
    LAWSON C R, KUWANO J, KOSEKI J. Geotextile containment for hydraulic and environmental engineering[J]. Geosynthetics International, 2008, 15(6): 384-427.
    [6]
    俞亚南, 张仪萍. 杭州西湖疏浚底泥工程性质试验研究[J]. 岩土力学, 2004, 25(4): 579-582. (YU Ya-nan, ZHANG Yi-ping. Test study on engineering properties of dredging soil of West lake in Hangzhou[J]. Rock And Soil Mechanics, 2004, 25(4): 579-582. (in Chinese))
    [7]
    黎 荣, 赵新华, 从月宾, 等. 城市河道环保疏浚的试验研究[J]. 水利水电技术, 2004, 35(5): 19-21. (LI Rong, ZHAO Xin-hua, CONG Yue-bin, et al. Experimental study on environmental dredging of a city river[J]. Water Resources And Hydropower Engineering, 2004, 35(5): 19-21. (in Chinese))
    [8]
    BOURGÈS-GASTAUD S, STOLTZ G, SIDJUI F, et al. Nonwoven geotextiles to filter clayey sludge: An experimental study[J]. Geotextiles & Geomembranes, 2014, 42(3): 214-223.
    [9]
    周 源, 高玉峰, 陶 辉, 等. 透气真空快速泥水分离技术对淤泥水分的促排作用[J]. 岩石力学与工程学报, 2010, 29(A01): 3064-3070. (ZHOU Yuan, GAO Yu-feng, TAO Hui. Drainage-Promotion effect of aeration vacuum rapid mud-water separating techinique on dredged sludge[J]. Chinese Journal of Rock Mechanics And Engineering, 2010, 29(A01): 3064-3070. (in Chinese))
    [10]
    SUITS L D, SHEAHAN T C, KOERNER R M, et al. Performance tests for the selection of fabrics and additives when used as geotextile bags, containers, and tubes[J]. Geotechnical Testing Journal, 2010, 33(3): 236-242.
    [11]
    BADER R A, BHATIA S K, KHACHAN M M, et al. Cationic starch flocculants as an alternative to synthetic polymers in geotextile tube dewatering[J]. Geosynthetics International, 2014, 21(2): 119-136.
    [12]
    MAURER B W, GUSTAFSON A C, BHATIA S K, et al. Geotextile dewatering of flocculated, fiber reinforced fly-ash slurry[J]. Fuel, 2012, 97(7): 411-417.
    [13]
    BHATIA S K, SATYAMURTHY R. Effect of polymer conditioning on dewatering characteristics of fine sediment slurry using geotextiles[J]. Geosynthetics International, 2009, 16: 83-96.
    [14]
    BHATIA S K, MAURER B W, KHACHAN M M, et al. Performance indices for unidirectional flow conditions considering woven geotextiles and sediment slurries[J]. Ge-Congress, 2013(230): 318-332.
    [15]
    SMOLLEN M. Evaluation of municipal sludge drying and dewatering with respect to sludge volume reduction[J]. Waterence & Technology, 1990, 22(12): 153-161.
    [16]
    VESILIND P A. The role of water in sludge dewatering[J]. Water Environment Research, 1994, 66(1): 4-11.
    [17]
    COLIN F, GAZBAR S. Distribution of water in sludges in relation to their mechanical dewatering[J]. Water Research, 1995, 29(8): 2000-2005.
    [18]
    MOO-YOUNG H K, TUCKER W R. Evaluation of vacuum filtration testing for geotextile tubes[J]. Geotextiles & Geomembranes, 2002, 20(3): 191-212.
    [19]
    RATTANAKAWIN C, HOGG R. Aggregate size distributions in flocculation[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2000, 177(2/3): 87-98.
    [20]
    RASTEIRO M G, GARCIA F A P, FERREIRA P, et al. The use of LDS as a tool to evaluate flocculation mechanisms[J]. Chemical Engineering & Processing, 2008, 47(8): 1323-1332.
    [21]
    ALAM N, OZDEMIR O, HAMPTON M A, et al. Dewatering of coal plant tailings: Flocculation followed by filtration[J]. Fuel, 2011, 90(1): 26-35.
    [22]
    ZHU W, ZHANG C L, CHIU A C F. Soil-water transfer mechanism for solidified dredged materials[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2007, 133(5): 588-598.
    [23]
    GARDNER R, GARDNER R. A method of measuring the capillary tension of soil moisture over a wide moisture range[J]. Soil Science, 1937, 43(43): 277-284.
    [24]
    SHERARD J L, DUNNIGAN L P, TALBOT J R. Basic properties of sand and gravel filters[J]. Journal of Geotechnical Engineering, 1984, 110(6): 684-700.
  • Cited by

    Periodical cited type(13)

    1. 章青,刘攀勇,顾鑫,乔延赫. 土壤干缩开裂和卷曲分析的数值模型与若干进展Ⅰ:基本方程与网格类数值方法. 水利学报. 2025(01): 42-55 .
    2. 郭鸿,鲁玉妍,李文阳,邹虎金,张彤川,黄芙蓉. 生态纤维改良砂质黏土干缩裂隙试验研究. 水利水运工程学报. 2025(02): 121-127 .
    3. 孙海波,丁佳祺,邓云鹏,吕亚歌,高海彦. 黏土内部边界与含水率下限对干缩裂隙的影响. 科技通报. 2024(05): 65-72 .
    4. 邓云鹏,彭镝,董梅,徐日庆,傅榆涵. 考虑毛细与吸附作用的黏土干缩开裂过程离散元模拟. 岩土工程学报. 2024(08): 1703-1711 . 本站查看
    5. 冀文雅,李甜,徐向舟,李依杭,郭胜利. 基于稀土元素示踪技术的库岸崩滑土体堆积特征研究. 水资源与水工程学报. 2024(05): 164-171+180 .
    6. 章君政,唐朝生,巩学鹏,周启友,程青,吕超,施斌. 基于高密度电阻率法的土体干缩裂隙动态发育过程精细监测研究. 岩土力学. 2023(02): 392-402 .
    7. 牟文,唐朝生,程青,田本刚,刘伟杰,胡慧聪,施斌. 裂隙对土体水分蒸发过程的影响. 岩土工程学报. 2023(12): 2641-2648 . 本站查看
    8. 刘瑞琪,雷学文,万勇,刘磊. 含水率梯度作用下填埋场压实黏土层开裂特性试验与机理分析. 力学与实践. 2022(01): 12-21 .
    9. 岳建伟,李嘉乐,王思远,陈颖,邢旋旋,杨雪. 定远营遗址稳定性和微观劣化的研究. 科学技术与工程. 2021(10): 4159-4166 .
    10. 汪时机,骆赵刚,李贤,文桃. 考虑局部含水率效应的浅层土体开裂过程与力学机制分析. 岩土力学. 2021(05): 1395-1403 .
    11. 黎柳坤. 水库土石坝填土料冻融交替下UU试验力学特征影响分析研究. 水利科学与寒区工程. 2021(04): 50-55 .
    12. 王明俊,王朋,柯树炜. 基础沉降对钢型井架承载力及稳定性的影响规律研究. 城市住宅. 2021(09): 193-195+198 .
    13. 唐朝生. 极端气候工程地质:干旱灾害及对策研究进展. 科学通报. 2020(27): 3009-3027+3008 .

    Other cited types(12)

Catalog

    Article views PDF downloads Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return