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Abstract: Natural riverbed overburden is often composed of stratified deposits of various soil types, resulting in a complex
structure commonly accompanied by clay interlayers. This study conducts a series of centrifuge shaking table model tests to
investigate the effects of a impermeable interlayer on excess pore water pressure, acceleration response, and spectral
characteristics of sandy overburden. The results show that the sand models prepared by layered compaction exhibit enhanced
liquefaction resistance under repeated shaking. The liquefaction susceptibility of shallow sandy layers is influenced by both the
thickness of the overburden and the presence of a clay interlayer. The presence of the clay interlayer reduces surface
acceleration response, and a significant decrease in amplification coefficients at the interlayer indicates the attenuation effect of
material damping on seismic wave propagation. Although the clay interlayer can dissipate high-frequency seismic energy and
attenuate low-frequency responses—thereby narrowing the plateau region of the response spectrum, reducing the maximum
dynamic amplification factor, and lowering the risk of earthquake-induced structural damage—current seismic design codes

may still underestimate the amplification effect of thick overburden in actual ground motion responses.
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Fig. 3 Particle size distribution curves of test materials



#1019 Wb, %, & Bk SR PR A BB LU RY T 2119
=1 WY R i v
Table 1 Physical propertes of test sand 3-3||| p,=0.65 = Al-”‘i i°}31_6 :?ﬁ
LR D (g'pccrll/qj)(gp'::;;g)(g’i:r]:q/“) v G r(isg/l A“S‘i iij :(3
31 080 1784 190 143 725 092 0.4l S i fxit: Oﬁ” <[
33065 1721 190 146 498 081 026 2:::5 Pij 4 )
VE: Cu=deoldios Ce=dso*/(dioXdeo); dios dzo, dsoF deo 537N : " A L QacJ_y
G2 L BB R 10%, 30%, 50%, 60%HIBHRL . . 72 S
. = KT 7 em
1.3 REHIE ~ IS 2 o FLIEMHR e WORRIB
Wb AR (i 4 1 R IR B 2 5k AT (a) Ef+EHE
HIRE T A I URSE F - CRLFSITREa] B S5 D
2 S8 AR AN T AT 5 B R S B 2 S 03150, b i ?2 . 0 .
VR BRI FERb LA AT R, B HRR fE i A 33|l € o )
InHAb A 7, AR S kR B T T A B 3 31:::’; ?Z,’;j'j Gl
TG, DR B SR . AL 80% 04 b a¥ P RaGl oF
XPESLIE, AR &K o B sk, BE L Gupiaii b )
JERELY S om, 41 O JRTZ, HIREHRR A S BERRRRS 1 el fha ol
JRE SRR ES T b 36 7'”2 12— 24 } XJ(,-)'
R E T AR (Model 1) 558 -3 ZE/b = R BAL: om
B (Model 2) PRALXIERIAL . ABFFL B AL @B 0 — Kb femas o LI — WORMBH
ARG, HEoNIRIERD 78 55 2 3 I E X HuE AR (b) A+ EH

F A E S LB K U . o3k i )9
REME SRR R0, BB R 1 B AR BRI AL S
F. WEELEYUEMER B EER . SO
FRCE T 6 4> DSPP-I-DM BUf AL Baellol (Efe.
-100~700 kPa). 7 I YX-1181-5 % =i 4%
P CREFE: +£50¢g) A3 YPIIMGVLSO e i
Bt (B 50~100 mm), AFIE 4 fir. R4
AR A HEATAR B, FLH AR JEES RO A I8 7y
S -0 A AR P R R LB K RN RN,
FeALFE v B AR T A & b -7 B O PR Bh i A
(IR o

B R 1] % 5E S » I K Sk Z2 TR AR K
HHAT M E SR 24 ho ABEHGRE TR EAA AT
RS2, SR L E U IR 3T 24 h MR Ak,
R ER L ZE LB ZEV L, BEERA K kEEE
AT ZIRMLR 24 he

02

pi16%:3:: 70

i} /s

Bl 4 RERASERENE

Fig. 4 Schematic model and instrumentation layout
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Fig. 5 Prototype and representative input seismic waves
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Table 2 Scaling relationships for dynamic centrifuge modeling
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Table 3 Cases in centrifuge model tests
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