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Research on nonlinear constitutive model of interface considering cyclic softening

CAI Zhengyin, FAN Kaifang, ZHU Xun
(Geotechnical Engineering Department, Nanjing Hydraulic Research Institute, Nanjing 210024, China)
Abstract: A zero-thickness interface constitutive model that considers cyclic softening and nonlinearity is proposed. Firstly,
large-scale cyclic shear tests are conducted on the sand-steel interface to obtain the exponential softening law of strength
parameters under cyclic shear tests. A cyclic softening equation considering a coupling effect of soil relative density and
structural roughness is proposed. Secondly, a hyperbolic model incorporating the cyclic softening equation is used as the
skeleton curve model to simulate the evolution of the interface from the initial state to the critical state under cyclic loading.
Finally, considering the nonlinearity of interface shear, a hysteresis loop model of shear stress-shear displacement is constructed.
In addition, empirical formulas for the strength parameters, stiffness parameters, normal stress, relative soil density, and

structural roughness of the model are summarized. A newly established model is used to predict experimental results of this

paper and existing literature, demonstrating its excellent capability in simulating interface cyclic shear tests.
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Table 1 Parameters of steel piles

Yms MEAEE/mm MY /mm  AER/mm R /um
1 — — — 0.2
2 50 3 1 33.2
3 50 3 3 91.9
4 40 5 3 191.6
5 40 9 3 340.9
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Table 2 Testing scheme

A& A EE
1 BT ow/kPa 50, 100, 150, 200
FHXT B SEFE Dy 0.5, 0.6, 0.7, 0.8
HUREE Ro/um 0.2, 332, 91.9, 191.6, 340.9
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Fig. 2 Shear stress-shear displacement curves
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Fig. 3 Relationship between friction coefficient and accumulated

plastic displacement under different normal stresses
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Fig. 4 Relationship between friction coefficient and accumulated

plastic displacement under different relative densities
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Table 3 Model parameters of a simplified interface model
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Fig. 15 Verification of simplified interface model
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Fig. 16 Verification of a complete interface model
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Table 4 Model parameters of a complete interface model
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