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基于 CT 图像人工智能分析的砂砾料几何特征参数 
提取方法 
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摘  要：砂砾料是土石坝常用的填筑材料，其力学特性受到级配、颗粒形状和空间排布等颗粒几何特征的显著影响。

准确获取这些几何特征是研究砂砾料力学特性的关键，对于土石坝设计和施工具有重要意义。本研究提出了一种基于

新型深度学习模型的砂砾料 CT 图像分割方法，结合 CT 图像三维重建技术和拓扑原理，形成了一套完整的砂砾料几何

特征参数提取方法，并研发了相应的程序，提供了算法流程和参数设置。研究结果表明，基于该方法的砂砾料 CT 图像

分割精度高达 95%，使用分割结果重建的三维模型进行计算，能够准确提取砂砾料的质心坐标、粒径、长宽比和球度

等几何特征参数。研究还揭示了砂砾料试样具有砂粒位于试样底部、砾粒分布较均匀的空间分布特点，以及颗粒长宽

比和球度概率密度呈偏态分布的形状因子分布特点。本研究有望为砂砾料力学特性研究提供新的技术手段，进而为优

化土石坝的设计和施工提供新的思路。 
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Abstract: Sand and gravel mixture are widely used fill material for earth and rock dams, with its mechanical properties 

significantly influenced by particle geometric characteristics such as gradation, shape, and spatial arrangement. Accurate 

acquisition these geometric characteristics is crucial for studying mechanical properties of gravel, which is of great significance 

for design and construction of earth and rock dams. This study proposes a novel CT image segmentation method for gravel 

based on a deep learning model, integrating CT image three-dimensional reconstruction and topology principles to create a 

comprehensive method for extracting geometric feature parameters of gravel. A corresponding program is developed to provide 

algorithmic flow and parameter settings. Results show that this method achieves a segmentation accuracy over 95%, allowing 

precise extraction of geometric parameters such as center of mass coordinates, grain size, aspect ratio, and sphericity. The study 

reveals that gravel specimens exhibit a spatial distribution where sand grains settle at the bottom and gravel grains are 

uniformly distributed. Additionally, the aspect ratio and sphericity display a skewed distribution in the predicted probability 

densities. This study is expected to provide new technical means for investigating mechanical properties of gravel, thereby  
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offering new insights for optimizing design and construction of earth and rock dams. 

Key words: sand and gravel mixture; particle geometry features; CT images; deep learning model; three-dimensional model

0  引    言 
砂砾料为粒径范围在 0.075～60 mm 的颗粒状、

无黏性散体材料，具有分布广、单个颗粒强度大的特

点，是土石坝使用最多的填筑材料之一。大量研究证

实[1-4]，砂砾料的力学特性受到级配、颗粒形状、颗粒

空间排布等几何特征参数的显著影响。如何准确获取

砂砾料的几何特征是研究其力学特性的关键技术之

一，对于土石坝设计和施工具有重要意义。 
目前，砂砾料的级配普遍采用颗粒分析试验进行

获取，但该试验方法在研究考虑级配演化的颗粒破碎

等问题时具有局限性。砂砾料在荷载作用下发生颗粒

破碎，级配随之发生连续变化，从而对其强度和体变

产生影响，不再符合经典临界状态本构理论中隐含的

材料稳定的假设[5-6]，构建考虑颗粒破碎的砂砾料本构

模型的关键在于揭示其级配曲线连续演化的规律[7-9]，

厘清颗粒破碎对临界状态的影响。但颗粒分析试验通

过筛分的方式只能获取荷载施加前后试样的级配，如

何无损地获取荷载施加过程中试样级配变化，是制约

该问题研究进展的关键技术难题，对于提升高坝变形

预测精度具有重要意义。此外，如何通过试验有效获

取和评定砂砾料颗粒群的形状仍未有定论。单个颗粒

的几何尺寸测量方法及形状评定方法已有大量研究，

例如采用拍照或使用光学显微镜等方法获取颗粒二维

轮廓[10-11]，通过测量轮廓的尺寸计算长宽比、球度和

扁平度等参数用以描述颗粒的狭长或棱角程度，但该

方法不适用于推广到颗粒群的研究。笔者此前尝试使

用抽样法获取部分砂砾料样本形状参数，并按照统计

学原则采用相同质量累计百分数加权平均的方法计算

了砂砾料颗粒群的形状参数[12]，但抽样法具有随机

性，所得结果的精确度仍需进一步讨论。表征颗粒排

布的砂砾料质心坐标等参数，目前尚无法通过试验直

接获取。因此，如何无损地准确获取砂砾料堆积体的

的级配、颗粒形状、颗粒排布等几何特征参数，是目

前亟待解决的技术难题。 
CT 扫描是无损检测材料的最佳手段，通过 CT 扫

描图像可以直接观察试样内部的细观结构，结合 CT
图像分析技术可以对细观结构进行测量。大量学者通

过 CT 扫描，精确捕捉了岩心、沥青混凝土等材料的

细观结构特征，通过 CT 图像分割技术，提取了这些

材料的孔隙[13-14]，并使用三维重建技术对孔隙进行了

重构，结合拓扑原理可以轻松测量计算模型的各几何

特征参数。然而通过 CT 图像分割砂砾料等散体颗粒

进而重构、提取和分析颗粒几何特征的研究仍在起步

阶段，这是由于散体颗粒紧密堆积，反映在其 CT 图

像中，相邻颗粒间的轮廓分界线对比度较低。即使提

升了 CT 机的扫描空间分辨率，由于体积效应造成的

伪影仍使得细颗粒轮廓分界线较模糊。已有的传统图

像分割方法如分水岭分割法等[15]，其分割精度完全依

赖于轮廓分界线，应用于砂砾料 CT 图像分析中无法

满足精度要求，这将导致后续基于分割结果重构的砂

砾料三维模型，部分紧密堆叠的颗粒蔟由于未分割完

全，被处理为同一个颗粒，基于该三维模型计算的砂

砾料颗粒几何特征参数的准确度显然无法满足研究要

求。基于深度学习模型的图像分割技术更适用于砂砾

料 CT 图像，该技术根据人为建立的真值图像经过训

练学习后预测分割结果，对颗粒轮廓清晰度要求较低，

是解决该难题的有效途径。但由于该技术需要丰富的

人工智能研究经验，目前砂砾料的 CT 图像分析仍较

少使用该技术，急需大量研究和应用案例。 
本文对两河口水电站料场的砂砾料开展了 CT 扫

描试验，提出了基于新型深度学习模型的砂砾料 CT
图像分割方法，结合三维重建技术和拓扑原理，提出

了基于 CT 图像智能分析的砂砾料颗粒粒径、形状参

数、质心坐标等几何特征参数提取方法。该方法的提

出，有望为砂砾料力学特性的研究提供新的技术手段，

进而为优化土石坝的设计和施工提供新的思路。 

1  CT 扫描试验 
1.1  试样制备 

本文采用两河口水电站料场砂砾料作为 CT 扫描

试验样本，选取玻璃球和磨圆度较好的卵石料作为颗

粒形状不同的对照组，如图 1 所示。为平衡 CT 扫描

分辨率和由体积效应造成的图像伪影之间的关系，经

CT 机反复调试，本文试样的粒径范围限定为 0.1～20 
mm，试样填筑为直径 10 cm、高度 8.5 cm 的圆柱体。 

 
图 1 试验样本 

Fig. 1 Test samples 
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本试验主要考虑级配、颗粒形状和密实度对砂砾

料填筑堆积体和 CT 图像特征信息提取的影响，试验

样本共计 18 个，试样制备方案如表 1 所示。试样细粒

含量越高、颗粒形状越复杂、密实度越高，扫描所得

CT 图像中颗粒轮廓及相邻颗粒分界线形态越复杂，

图像特征提取难度越大。试样制备时使用定制土工筛，

按照毫米为单位控制样本粒径，并在树脂容器（树脂

密度较低不影响试样造影）中分 3 层击实（密实度最

密）或不击实（密实度最松）进行均匀填筑。试样的

级配不均匀系数 Cu定为 1～4，曲率系数 Cc约为 1，
如图 2 所示。由于使用 CT 扫描机做测试时发现，试

样级配特征参数（Cu和 Cc）在上述范围时所得 CT 图

像最清晰，故本试验将试样的级配曲线限定在该范围

内。 

 

图 2 试验级配曲线 

Fig. 2 Particle size distribution of test samples 

表 1 试样制备方案 

Table 1 Preparation scheme of test samples 
材料 试样编号 密实度 

砂砾料 S1～S8 最松 
S9～S12 最密 

卵石料 S13、S14 最松 
砂砾料和卵石混合料 
（混合比例 1∶1） S15、S16 最松 

玻璃球 S17、S18 最松 

1.2  扫描参数 

CT 扫描试验采用德国 diondo d2工业高分辨纳米

焦点 CT 机，扫描空间分辨率为 96 μm，扫描方向为

自下向上。每个试样经扫描后获取 CT 断层图像 1331
张，18 个试样共得到 23958 张 CT 图像，图像总数满

足深度学习模型训练数据集总量要求，CT 图像参数

如图 3 所示。像素是构成 CT 图像的基本单位，为二

维概念，像素所对应的三维空间体积单位为体素。CT
扫描为断层扫描，分别可获取XYZ三轴方向上的图像，

3 个方向的图像分辨率不相等。为了满足深度学习模

型对训练图像参数的要求，CT 图像进行重新采样处

理，重采样后的图像分辨率为 800×800×800。 

 
图 3 试验样本图像参数 

Fig. 3 Parameters of CT image of specimen 

2  基于 CT 图像智能分析的砂砾料颗粒

几何特征提取方法 
本研究针对砂砾料 CT 图像中颗粒形状复杂、粒

径相差较大及颗粒紧密堆积的特点，提出了基于新型

深度学习模型的砂砾 CT 图像分割算法，该算法与 CT
图像三维重建技术和拓扑几何计算方法集成后，形成

了一套完整的基于 CT 图像智能分析的砂砾料颗粒几

何特征提取方法，并开发了相应程序。该方法的具体

实现如下。 
2.1  CT 图像数据集构建方案 

使用深度学习模型等人工智能算法分割图像，首

先需要构建适宜的图像数据集，数据集的质量和构建

方法，对模型预测结果的准确度影响极大。本研究设

计的 CT 图像数据集构建方案如下： 
将 18 个粗粒料的 23958 张 CT 图像，按照 70∶

15∶15 的比例分为训练集、验证集和测试集，分别用

以深度模型的训练、验证和最终测试评价。3 个数据

集按以上比例分类后，使用各向扩散滤波算法[16]进行

降噪处理，以减少 X 射线物模转换成像形成的图像噪

声对数据集质量的影响，并按照式（1）对降噪后的图

像进行标准化处理，控制所有 CT 图像的 CT 值在相

同范围内。 

Standard
dev

mean
St

II
d


   。        (1) 

式中：I 为原 CT 图像；mean 和 devStd 分别为原 CT 图

像的 CT 值平均数和标准差；IStandard为标准化后的 CT
图像。 

粗粒料 CT 图像标准化后，需为每张图像创建带

标签的真值图像，作为检验深度学习模型训练成果的

唯一标准。本研究使用开源程序 VGG Image Annotator
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为粗粒料 CT 图像创建真值图像，即使用多段线人工

描绘图像的轮廓，程序将对轮廓标注点坐标信息进行

记录，为每个颗粒创建唯一的轮廓标签。这里的真值

图像并非为传统意义的图像，而是每个砂砾料颗粒在

该图像中的轮廓标注点坐标集合，如图 4 所示。 

 
图 4 试样 CT 图像的真值图像 

Fig. 4 True value image of test sample CT image 

2.2  一种用于砂砾料 CT 图像分割的新型卷积神经

网络 

针对砂砾料 CT 图像中颗粒尺寸相差较大、形状

复杂以及颗粒紧密堆积的特点，本研究设计了一种新

型结构的卷积神经网络 CNN-SegGravel，网络结构示

意图如图 5 所示。CNN-SegGravel 的网络结构采用对

称分布，为了更好地从不同尺度识别土颗粒轮廓和空

间排布特征，其在卷积核元素之间插入不同膨胀率的

分支，在不增加参量的前提下增加卷积核的接受野，

进而在更大空间范围内捕捉图像特征信息。这种新型

混合结构的神经网络由于具有不同膨胀率的分支，相

比已有的对称型卷积神经网络例如 U-Net[17]，不会改

变特征图的空间大小且可接受任意尺寸输入，全程使

用卷积层没有连接层，有效克服对称结构卷积神经网

络无法处理对象尺寸跨度大的缺陷。 
假设输入的砂砾料 CT 图像为 I，卷积核 w 的膨

胀率为 r，膨胀卷积在（x,y）点的输出 O 为[18] 
( , ) ( , ) ( , )

i i
O x y l x ri y rj w i j    。 (2) 

式中：(i,j)为历遍卷积核 w 的所有元素。不同膨胀率

分支采用不同膨胀率 r 以从多尺度空间上提取图像特

征，并将膨胀卷积的输出进行并行处理，在通道维度

上进行连接。 
CNN-SegGravel 的编码器每一层都包括一次卷积

操作和一次最大池化操作，卷积操作表示为式（3），
最大池化操作表示为式（4）。 

1 Conv( , )l l l lx x w b     ，       (3) 

1 MaxPool( )l lx x    。          (4) 
式中：xl为第 l 层的输入；wl为卷积核；bl为偏置项，

Conv 为卷积操作；MaxPool 为最大池化操作。编码器

表示为式（5），膨胀卷积的公式为式（6）。 

1 UpSample( )l lx x    ，         (5) 

1 DilatedConv( , , )l l l lx x w r b     。 (6) 

式中：DilatedConv 代表膨胀卷积操作；r 为膨胀率。

将不同膨胀率的分支（ASPP）添加到卷积神经网络时，

需要在编码器和解码器的每一层都添加一个 ASPP 模

块。ASPP 模块包括几个并行具有不同膨胀率的膨胀

卷积层，假设膨胀率有 n 个{r1, r2, ..., rn}，那么 ASPP
模块的输出可以表示为 

1 1 1 1Concat(DilatedConv ,( ),lx x w r b      

DilatedConv , ),( )l l lx w r b   。        (7) 
式中：Concat 代表连接操作，将不同膨胀卷积层的输

出在通道维度上相连。 

 

图 5 CNN-SegGravel 的网络结构示意图 

Fig. 5 Schematic diagram of CNN-SegGravel network structure 

2.3  模型评估指标和损失函数 

本研究使用 Dice 相似性系数、交并比、精确度、

召回率、准确度、明确性共计 6 个指标[16]，对本文

CNN-SegGravel 预测所得的砂砾料 CT 图像分割结果

进行全面检验。这些指标均为图像学领域判定两幅图

像相似程度的指标，CNN-SegGravel 预测的图像分割

结果与真值图像越相似，代表其预测的精确度越高。

其物理意义和计算方法如下。 
Dice 相似性系数（DSC）：反映分割图像和真值

图像中目标的重叠程度，其计算公式为 
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2 Predicted Ground Truth
DSC

Predicted Ground Truth





  。  (8) 

式中：Predicted 为预测图像；Ground Truth 为真值图

像；DSC 为相似性系数。 
交并比（IoU）：反映分割图像和真值图像中目标的

相似程度，其计算公式为 
Predicted Ground TruthIoU
Predicted Ground Truth





  。 (9) 

精确度（Precision）：反映图像分割的精确程度，

其计算公式为 
True PositivesPrecision

True Positives False Positives



。(10) 

式中：True Positives 为图像的真阳性值；False Positive
为图像的假阳性值。 

召回率（Recall）：分割的类别像素召回率，其计

算公式为 
True PositivesRecall

True Positives+False Negativies
  。 (11) 

式中：False Negativies 为图像的假阳性。 
准确率（Accuracy）：反映图像分割的准确率，其

计算公式为 
True Positives+True NegativiesAccuracy

Total Predictions
  。 (12) 

式中：True Negativies 为图像的真阴性值；Total 
Predictions 为全部预测图像。 

明确性（Specificity）：分割方法识别阴性样本的能

力，其计算公式为 
True NegativiesSpecificity

True Negatives+False Positives
  。 (13) 

以上 6 个指标的取值范围都为（0,1），其值越接近 1
说明分割精确度越高。 

本研究提出了包含形状感知项和粒径感知项的新

损失函数，用于计算 CNN-SegGravel 预测值和真实值

的差距。该函数考虑了砂砾料 CT 图像分割重点关注

颗粒的形状和粒径，通过加权系数将形状感知项和粒

径感知项引入标准交叉熵损失函数，保证了标准交叉

熵损失和附加几何约束之间保持平衡。本研究提出的

损失函数如下式： 
 ( , ) CrossEntropy( , )L A B A B   

Shapeloss( , ) DiameterLoss( , )A B A B    。(14) 

式中：α 和 β 为权重系数，通过模型学习自适应调整；

CrossEntropy 为标准交叉熵函数[19]；A 和 B 分别为真

值图像和预测图像二值分割结果的掩膜；Shapeloss 和
Diameterloss 分别为形状感知项和粒径感知项，其计

算公式为 
ShapeLoss( , ) 1 IoUA B     ，     (15) 

EqDiameter( ) EqDiameter( )
DiameterLoss( , )

EqDiameter( )
A B

A B
A


 。

(16) 
式中：EqDiameter 为颗粒的等效圆半径。 
2.4  训练流程及超参数设置 

本研究训练卷积神经网络CNN-SegGravel的流程

如图 6 所示，主要分为以下 4 步： 
第一步：构建砂砾料 CT 图像数据集，包括训练

集、训练集、验证集、测试集，创建各 CT 图像的真

值图像。 
第二步：使用训练集训练卷积神经网络，迭代直

到损失函数收敛后输出模型到验证集。 
第三步：使用验证集验证第二步输出的模型，迭

代直至验证集与真值图像的 Dice 相似性系数、交并

比、精确度、召回率、准确度、明确性共计 6 个指标

均为 0.95 后输出到测试集，否则将模型传递回训练集

重新训练。 
第四步：使用测试集测试第三步输出的模型，直

到测试集与真值图像的 Dice 相似性系数、交并比、精

确度、召回率、准确度、明确性共计 6 个指标均为 0.95
后输出，否则将模型传递回训练集重新训练。 

 
图 6 CNN-SegGravel 训练流程 

Fig. 6 Training flowchart of CNN-SegGravel 

卷积神经网络 CNN-SegGravel 的训练采用表 2 所

示的初始超参数，除卷积核和池化层尺寸保持不变，

其他超参通过模型学习结果进行调整，直至模型具有

最佳表现。CNN-SegGravel 在模型训练过程中使用衰

减系数动态地减少学习率，以提高模型的学习性能。

初始学习率设置为 0.01，衰减系数为 0.1，在训练循
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环中使用学习率调度器 StepLR，根据学习结果动态更

改衰减系数，直到衰减后的学习率能够维持损失函数

迭代残差和学习效率的平衡（损失函数随迭代次数变

化曲线下降速度放缓且趋于稳定）。 
表 2 CNN-SegGravel 超参数初始设定 

Table 2 Initial setting of hyperparameters for CNN-SegGravel 
超参数 描述 初始设定 
学习率 控制权重更新速度 0.01 

损失函数的权

重系数 控制拟合能力 α=1，β=1 

批量大小 影响训练稳定性和收敛速度 32 
训练轮数 决定训练时长和泛化能力 100 

正规则化参数 控制拟合能力 1 
历史记录 控制训练集上的循环次数 300 

2.5  基于 CT 图像的砂砾料三维模型重建及几何特

征参数计算方法 

本研究使用体素化技术，将分割后的砂砾料 CT
图像重建为三维模型，即将同试样所有颗粒分割后的

二值化图像沿 Z 轴按扫描间距堆叠，将二维像素转化

为体素进而形成试样的三维模型。通过重建的三维模

型，结合拓扑原理计算可得每个颗粒的质心坐标、粒

径、形状因子等几何特征参数。 
砂砾料颗粒的质心由力矩进行计算，因质点绕某

点的力矩为质量与该点和质点之间距离的乘积，则砂

砾料颗粒的质心可通过每个颗粒力矩的总和除以粒团

总质量进行计算，即 

( , , ) d
COM  

( , , ) d
COM  

( , , ) d
COM  

V
x

V
y

V
z

x y z x V

M
x y z y V

M
x y z z V

M








 







 








，

，

。

     (17) 

式中：M 为目标颗粒总质量； ( , , )x y z 为 ( , , )x y z 点单

元密度：dV 为单元体积；COMx，COMy，COMz为颗

粒质心 x 轴，y 轴和 z 轴坐标。本研究假设砂砾料为

均质材料，单元密度采用砂砾料的实际密度。 
粗粒料颗粒粒径实际为其短轴长度，颗粒的二阶

几何矩的协方差矩阵如式（18）所示，该矩阵最小特

征值对应的特征向量表示该颗粒形状的主轴方向即短

轴，该短轴的长度即为颗粒粒径；相应地该矩阵最大

特征值对应的特征向量表示该颗粒形状的主轴方向为

长轴。 
2

2

2

Cov

x xy xz

xy y yz

xz yz z

   
 

    
     

  。    (18) 

式中：x，y 和 z 为颗粒体素坐标相对颗粒质心的偏移。 
本研究使用长宽比和球度作为定量描述砂砾料形

状的指标。长宽比是描述颗粒与针形接近程度的形状

因子，其值为颗粒长轴长度与短轴长度之比，属于无

量纲参数，其值大于 1 且越大代表颗粒形状越接近针

形计算公式如下所示： 
L

W
    。               (19) 

式中： 为颗粒的长宽比；L 为颗粒长轴的长度；W
为颗粒短轴的长度。球度是描述颗粒与球体接近程度

的形状因子，同属无量纲参数，其范围在 0～1 且越

接近 1 代表颗粒与球体越接近，计算公式如下式[12]

所示： 
2
334π

4π
V

B
S

 
 
    。          (20) 

式中：B 为颗粒球度；V 为颗粒体积；S 为颗粒表面积。

砂砾料颗粒的体积和表面积计算方法如下： 
假设单位体素大小为 a×a×a，n 为颗粒包含体素

个数，体素在 x，y 和 z 方向上相邻体素数量分别为

nx、ny 和 nz，单位体素的表面积为 

2
voxel 2 2 2

nx ny nzS a     
 

  。   (21) 

对式（21）根据颗粒包含体素数量求和，则颗粒的表

面积为 

voxelS S    。             (22) 

式中：S 为颗粒的表面积； voxelS 为体素的表面积。砂

砾料颗粒体积为颗粒包含体素个数与体素体积的乘

积，即 

3V na   。               (23) 

3  试验结果分析 
3.1  基于深度学习模型的砂砾料 CT 图像分割精度

验证 

本研究使用两种方法检验所提CNN-SegGravel对
砂砾料 CT 图像分割的精度，其一是使用 CT 图像测

试集分割结果与真值图像相似程度进行评估，其二是

使用人工对分割结果可视化进行判断。 
砂砾料 CT 图像测试集的分割结果与其真值图像

的 6 个相似度指标如图 7 所示，该图表明所有图像相

似度评价指标在 300 次循环内均达到了 0.95，精度满

足基于 CT 图像分析的砂砾料颗粒几何特征研究要

求。 
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图 7 测试集分割结果评估 

Fig. 7 Evaluation of test set segmentation results 

可视化人工判断可更直观地检验砂砾料 CT 分割

结果，防止图像相似度判断指标受假阳性或假阴性影

响造成错误。受篇幅限制，这里仅展示 S3、S13 和 S17
试样沿 Z 轴中心断面的 CT 图像分割结果，如图 8 所

示，其材料分别为砂砾料、卵石料和玻璃球。分割后

的 CT 图像原为二值图像，即分割出的颗粒为白色而

背景为黑色。为了更好地展示分割结果，图 8 进行了

彩色渲染。图 8 清楚地反映出，CNN-SegGravel 将 CT
图像中所有颗粒都精准分割完毕，该模型能够有效保

障后续基于 CT 图像分割结果重建的三维模型精准

度。 

 

图 8 部分试样 CT 图像分割结果 

Fig. 8 Partial specimen CT image segmentation results 

3.2  基于 CT 图像重建的砂砾料三维模型 

本研究使用体素化技术将砂砾料试样分割后的

CT 图像重建为三维模型，部分试样的三维模型如图 9
所示。 

为验证基于 CT 图像重建的砂砾料三维模型精

度，将三维模型所有颗粒的长轴长度进行统计并计算

其级配的不均匀系数 Cu和曲率系数 Cc，使用式（24）
对三维模型的级配进行误差分析，结果如图 10 所示， 

 
图 9 部分试样三维模型 

Fig. 9 Partial specimen three-dimension models 

图中试样编号由于横坐标轴距离有限，省略了编号的

前缀“S”。 

3D 100%C C
C




    。       (24) 

式中： 3DC 为三维模型颗粒级配的不均匀系数 Cu或曲

率系数 Cc；C 为试样实际级配的 Cu或 Cc；δ 为三维模

型的相对误差。图 10 表明基于 CT 图像重建的砂砾料

三维模型精度较高，其颗粒级配特征参数与实际值的

相对误差均小于 2%，同时进一步证明本研究提出的

CNN-SegGravel在砂砾料CT图像分割方面精度较高，

泛化能力较强（本文设定的砂砾料级配范围、颗粒形

状和密实度对其分割精度无影响），其网络结构、模型

评估指标、训练流程和超参数设定是合理的。 

 

图 10 试样三维模型级配特征参数相对误差 

Fig. 10 Relative error of characteristic parameters of specimen 3D  

model grading 

3.3  砂砾料颗粒质心坐标空间分布规律 

基于 CT 图像重建的砂砾料三维模型颗粒质心坐
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标空间分布如图 11 所示，为更好地展示颗粒质心坐标

空间分布特点，本文将试样的颗粒粒径划分为小于 2，
2～5，5～10，10～20 mm 共 4 个粒径组进行展示。

受篇幅限制，这里仅展示试样 S3 的颗粒质心空间分

布，其他试样的质心空间分布具有相似的规律。图 11
清晰地反映出 S3 试样各粒组颗粒空间排布特征，试

样粒径小于 2 mm 的砂粒基本位于试样底部，粒径在

2～20 mm 的砾粒空间分布较均匀，这是由于砂粒粒

径小于砾粒形成的骨架间通道的直径，导致砂粒从骨

架通道滑落聚集于试样底部。若对试样施加外荷载，

结合本研究提出的质心坐标提取技术，可快速定位颗

粒位置相对变化，此项技术可为考虑颗粒运移影响的

砂砾料力学特性研究提供有力的技术支撑。 

 

图 11 试样 S3 颗粒质心坐标空间分布 

Fig. 11 Spatial distribution of mass coordinates of particle center  

for specimen S3 

3.4  砂砾料颗粒形状因子分布规律 

本研究使用高斯核函数分析砂砾料三维模型颗粒

长宽比和球度的概率密度，该方法是非参数的统计方

法，不预先假设数据遵循特定分布规律，可分析随机

变量的概率密度，其计算方法为：假设在每个观察数

据点位置都放置一个高斯核函数（式（25））[20]，将

所有核函数相加并归一化后，形成的平滑曲线即概率

密度函数。 
2

21( ) e
2π

x

K x


   。        (25) 

式中：x 为数据点与核心差值；K(x)为高斯核函数。则

x 处的估计密度为 
1( ) ix x

f x K
nh h

    
 

  。     (26) 

式中：f(x)为点 x 处的估计密度；n 为样本数量；xi为

第 i 个观察点；h 为带宽，用于控制核函数宽度。 
将式（17）～（23）计算所得的砂砾料颗粒长宽

比和球度分别代入 x，带宽 h 取默认值 1.0，则其形状

因子的概率密度分布如图 12 所示。试样 S17 和 S18
为玻璃球，其长宽比和圆形度均为 1，故图 12 不包括

这两个试样。图 12 表明，砂砾料试样的颗粒长宽比和

球度的概率密度具有相似的偏态分布特点。其中仅卵

石料试样 S14 的概率密度峰值明显高于其他试样，说

明该试样的形状因子的离群值过多，颗粒形状具有较

高的随机性。基于本研究提出的砂砾料颗粒形状分布

规律，有望为砂砾料颗粒群的评定及颗粒形状对其力

学性质影响的研究，提供新的思路。 

 
图 12 试样颗粒形状因子概率密度分布 

Fig. 12 Specimen particle shape factor probability density  

distribution 

4  结    论 
本研究提出了基于新型深度学习模型的砂砾料

CT 图像分割方法，该方法与 CT 图像三维重建技术和

拓扑原理集成，形成了一套完成的基于 CT 图像人工

智能分析的砂砾料颗粒粒径、颗粒形状和颗粒空间排

布等几何特征参数的提取方法，并研发了相应的程序，

给出了算法流程和参数设置。本研究有望为砂砾料力

学特性的研究提供新的技术手段。主要得到以下 3 点

结论。 
 （1）本研究提出了考虑颗粒粒径分布和形状特点

的砂砾料 CT 图像分割的深度学习模型 CNN- 
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SegGravel，该模型采用在卷积核元素之间插入不同膨

胀率分支的对称分布的网络结构，使用包含粒径感知

项和形状感知项的新损失函数，经真值图像验证，基

于该模型的砂砾料 CT 图像分割精度高达 95%。

 （2）本研究基于砂砾料 CT 图像分割结果使用体

素化技术重建了高精度三维模型，结合颗粒力矩分析、

几何矩特征值分析等拓扑几何计算方法，提出了基于

CT 图像人工智能分析的砂砾料质心坐标、粒径、长

宽比和球度等几何特征参数的计算方法。 
（3）砂砾料试样颗粒质心坐标具有砂粒位于试样

底部、砾粒分布较均匀的空间分布特点；其颗粒的长

宽比和球度概率密度均有偏态分布的特点。 
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