ZHU Junyu, PEI Lihua, GUI Yue. Characteristics and mechanism of adhesion between organic clay soil and metal surface[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 605-615. DOI: 10.11779/CJGE20221415
    Citation: ZHU Junyu, PEI Lihua, GUI Yue. Characteristics and mechanism of adhesion between organic clay soil and metal surface[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 605-615. DOI: 10.11779/CJGE20221415

    Characteristics and mechanism of adhesion between organic clay soil and metal surface

    More Information
    • Received Date: November 15, 2022
    • Available Online: March 14, 2024
    • The presence of organic matter in soil has a significant effect on the soil-metal interface adhesion, but its influencing law and mechanism have not been systematically studied. By adding peat to montmorillonite, illite and kaolin, three groups of clay samples with different mineral and organic matter contents are prepared. The adhesion between the soil-metal interfaces with different moisture contents is tested by using the MC-100 tensile testing machine. The test results show that the relation curve between the adhesion force F and water content w is a typical "bell-shape" in the range from the plastic limit to the liquid limit water content. With the increase of the organic matter content wu, the curve of F-w changes from high to flat. With the increase of the organic matter content wu, the change of peak adhesion Fmax can be divided into three stages: fluctuation or slow decline (or ascending) stage, significant decline stage, and stable stage. The saturation adsorption of the organic matter with three kinds of clay minerals is measured by the Fu's method, and the occurrence forms of the organic matter in soil change with the content of the organic matter. The mechanism analysis shows that in addition to the content of the organic matter, the form of the organic matter in soil also has a significant effect on the macroscopic adhesion of soil samples. Finally, the adhesion force of the natural peat soil-metal interface distributed along Line 5 of Kunming Metro is tested, and it is concluded that the adhesion force is small, and the risk of adhesion is also small, which is verified by the fact that the shield machine traversing through the peat layer does not show any serious adhesion to the cutter plate or clogging phenomenon.
    • [1]
      任露泉. 土壤黏附力学[M]. 北京: 机械工业出版社, 2011.

      REN Luquan. Soil Adhesion Mechanics[M]. Beijing: China Machine Press, 2011. (in Chinese)
      [2]
      刘琦, 漆采玲, 马雯波, 等. 深海底质土-金属界面间黏附特性试验研究[J]. 岩土力学, 2019, 40(2): 701-708. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902033.htm

      LIU Qi, QI Cailing, MA Wenbo, et al. Experimental study of adhesion between deep-sea sediment and metal surface[J]. Rock and Soil Mechanics, 2019, 40(2): 701-708. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902033.htm
      [3]
      SASS I, BURBAUM U. A method for assessing adhesion of clays to tunneling machines[J]. Bulletin of Engineering Geology and the Environment, 2009, 68(1): 27-34. doi: 10.1007/s10064-008-0178-6
      [4]
      FEINENDEGEN M, ZIEGLER M, SPAGNOLI G, et al. A new laboratory test to evaluate the problem of clogging in mechanical tunnel driving with EPB-shields[C]// ISRM International Symposium-EUROCK 2010. OnePetro, 2010.
      [5]
      HOLLMANN F S, THEWES M. Assessment method for clay clogging and disintegration of fines in mechanised tunnelling[J]. Tunnelling and Underground Space Technology, 2013, 37: 96-106. doi: 10.1016/j.tust.2013.03.010
      [6]
      邱长林, 张庆建, 闫澍旺, 等. 黏土黏附力试验研究[J]. 岩土力学, 2017, 38(5): 1267-1272. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201705006.htm

      QIU Changlin, ZHANG Qingjian, YAN Shuwang, et al. Experimental study of adhesion of clay[J]. Rock and Soil Mechanics, 2017, 38(5): 1267-1272. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201705006.htm
      [7]
      BASMENJ A K, MIRJAVAN A, GHAFOORI M, et al. Assessment of the adhesion potential of kaolinite and montmorillonite using a pull-out test device[J]. Bulletin of Engineering Geology and the Environment, 2017, 76(4): 1507-1519. doi: 10.1007/s10064-016-0921-3
      [8]
      BURBAUM U, SASS I. Physics of adhesion of soils to solid surfaces[J]. Bulletin of Engineering Geology and the Environment, 2017, 76(3): 1097-1105. doi: 10.1007/s10064-016-0875-5
      [9]
      AZADEGAN B, MASSAH J. Effect of temperature on adhesion of clay soil to steel[J]. Ceretari Agronomice in Moldova, 2012, 2(150): 21-27.
      [10]
      谭超. 黏土与盾构刀盘之间黏附特性研究[D]. 北京: 北京交通大学, 2021.

      TAN Chao. Study on Adhesion Between Clay and Shield Cutterhead[D]. Beijing: Beijing Jiaotong University, 2021. (in Chinese)
      [11]
      张先伟, 黎伟, 王勇, 等. 疏浚土的附着力特性试验研究[J]. 水运工程, 2014(3): 45-50, 56. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201403012.htm

      ZHANG Xianwei, LI Wei, WANG Yong, et al. Test research on adhesion characteristics of dredged soils[J]. Port & Waterway Engineering, 2014(3): 45-50, 56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201403012.htm
      [12]
      李俊伟, 佟金, 胡斌, 等. 不同含水率黏重黑土与触土部件互作的离散元仿真参数标定[J]. 农业工程学报, 2019, 35(6): 130-140. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201906016.htm

      LI Junwei, TONG Jin, HU Bin, et al. Calibration of parameters of interaction between clayey black soil with different moisture content and soil-engaging component in northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(6): 130-140. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201906016.htm
      [13]
      HUAT B B K, KAZEMIAN S, PRASAD A, et al. State of an art review of peat: General perspective[J]. International Journal of Physical Sciences, 2011, 6(8): 1988-1996.
      [14]
      DOMZAL H. Preliinary studies of the influence of moisture on physico-mechanical properties of some soils with regard to estimation of optimum working conditions of implements[J]. Polish Jouranl of Soil Science, 1970, 3(1): 61-70.
      [15]
      MATERIALS A S F T. Standard Classification of Peat Samples by Laboratory Testing[S]. PA, USA: West Conshohocken, 2013.
      [16]
      公路土工试验规程: JTG 3430—2020[S]. 北京: 人民交通出版社, 2020.

      Test Methods of Soils for Highway Engineering: JTG 3430—2020[S]. Beijing: China Communications Press, 2020. (in Chinese)
      [17]
      土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

      Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
      [18]
      FAWZI H, RACHID Z. Effects of organic matter on physical properties of dredged marine sediments[J]. Waste and Biomass Valorization, 2018, 11(1): 389-401.
      [19]
      RASHID M A, BROWN J D. Influence of marine organic compounds on the engineering properties of a remoulded sediment[J]. Engineering Geology, 1975, 9(2): 141-154. doi: 10.1016/0013-7952(75)90036-8
      [20]
      BOOTH J S, DAHL A G. A note on the relationships between organic matter and some geotechnical properties of a marine sediment[J]. Marine Geotechnology, 1986, 6(3): 281-297. doi: 10.1080/10641198609388191
      [21]
      FEINENDEGEN M, ZIEGLER M, WEH M, et al. Clogging during EPB-tunnelling: occurrence, classification and new manipulation methods[C]//Proceedings ITA-AITES World Tunnel Congress, Helsinki. 2011.
      [22]
      WANG S, LIU P, ZHONG J. Influence factors of the adhesion strength of clayey soil[C]// Civil Infrastructures Confronting Severe Weathers and Climate Changes Conference. Springer, Cham, 2021.
      [23]
      THEWES M, HOLLMANN F. Assessment of clay soils and clay-rich rock for clogging of TBMs[J]. Tunnelling and Underground Space Technology, 2016, 57: 122-128. doi: 10.1016/j.tust.2016.01.010
      [24]
      杨益, 朱文骏, 李兴高, 等. 老黏土地层土压盾构刀盘堵塞渣土改良效果评价方法[J]. 北京交通大学学报, 2019, 43(6): 43-49, 61. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201906006.htm

      YANG Yi, ZHU Wenjun, LI Xinggao, et al. Evaluation method for muck conditioning of hard clay to prevent clogging in EPB tunnelling[J]. Journal of Beijing Jiaotong University, 2019, 43(6): 43-49, 61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201906006.htm
      [25]
      黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000.

      HUANG Changyong. Soil Science[M]. Beijing: China Agriculture Press, 2000. (in Chinese)
      [26]
      李少博, 徐英德, 高晓丹, 等. 离子界面行为在土壤有机无机复合体形成中的作用[J]. 中国生态农业学报, 2018, 26(11): 1682-1691. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201811016.htm

      LI Shaobo, XU Yingde, GAO Xiaodan, et al. The role of ionic interfacial behaviors in formation of soil organic-inorganic complexes[J]. Chinese Journal of Eco-Agriculture, 2018, 26(11): 1682-1691. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201811016.htm
      [27]
      TAVENAS F A, JEAN P, LEBLOND P, et al. The permeability of natural soft clays. Part II: Permeability characteristics[J]. Canadian Geotechnical Journal, 2011, 20(4): 645-660.
      [28]
      王磊, 应蓉蓉, 石佳奇, 等. 土壤矿物对有机质的吸附与固定机制研究进展[J]. 土壤学报, 2017, 54(4): 805-818. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201704001.htm

      WANG Lei, YING Rongrong, SHI Jiaqi, et al. Advancement in study on adsorption of organic matter on soil minerals and its mechanism[J]. Acta Pedologica Sinica, 2017, 54(4): 805-818. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201704001.htm
      [29]
      SOLLINS P, SWANSTON C, KLEBER M, et al. Organic C and N stabilization in a forest soil: evidence from sequential density fractionation[J]. Soil Biology and Biochemistry, 2006, 38(11): 3313-3324. doi: 10.1016/j.soilbio.2006.04.014
      [30]
      NAVON R, HERNANDEZ-RUIZ S, CHOROVER J, et al. Interactions of carbamazepine in soil: effects of dissolved organic matter[J]. Journal of Environmental Quality, 2011, 40(3): 942-948. doi: 10.2134/jeq2010.0446
      [31]
      傅积平. 土壤结合态腐殖质分组测定[J]. 土壤通报, 1983, 40(3): 36-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB198302012.htm

      FU Jiping. Grouping determination of soil-bound humus[J]. Chinese Journal of Soil Science, 1983, 40(3): 36-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB198302012.htm
      [32]
      LAVALLEE J M, SOONG J L, COTRUFO M F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century[J]. Global Change Biology, 2020, 26(1): 261-273. doi: 10.1111/gcb.14859
      [33]
      PAPUGA K, KASZUBKIEWICZ J, KAWALKO D, et al. Effect of organic matter removal by hydrogen peroxide on the determination of soil particle size distribution using the dynamometer method[J]. Agriculture-Basel, 2022, 12(2): 1-14.
      [34]
      桂跃, 余志华, 刘海明, 等. 高原湖相泥炭土次固结特性及机理分析[J]. 岩土工程学报, 2015, 37(8): 1390-1398. doi: 10.11779/CJGE201508005

      GUI Yue, YU Zhihua, LIU Haiming, et al. Secondary consolidation properties and mechanism of plateau lacustrine peaty soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1390-1398. (in Chinese) doi: 10.11779/CJGE201508005
      [35]
      蒋忠信. 滇池泥炭土[M]. 成都: 西南交通大学出版社, 1994.

      JIANG Zhongxin. Dianchi Peat Soil[M]. Chengdu: Southwest Jiaotong University Press, 1994. (in Chinese)
    • Cited by

      Periodical cited type(16)

      1. 赵延辉,郑武略,张恒宾,王瑞显,陈浩. 输电线路塔基卸荷损伤砂岩循环加卸载特性研究. 工程勘察. 2025(05): 14-20 .
      2. 王瑞红,贾敬茹,骆浩,危灿,张健锋,贾依行. 峰前峰后循环加卸载对砂岩动力特性的影响. 长江科学院院报. 2024(03): 94-101 .
      3. 陈兴周,白亚妮,陈莉丽,马彬,王文瑞,龚盛. 高渗压与循环加卸载环境下开挖卸荷岩体力学特性试验研究. 岩土工程学报. 2024(04): 737-745 . 本站查看
      4. 姜德义,杨镇宇,范金洋,李宗泽,锁进杰,陈结. 盐岩循环加卸载过程中的速率效应试验研究. 岩土力学. 2023(02): 403-414 .
      5. 鲜振兴,许旭堂,杨枫,简文彬,徐祥,李光杰,刘道奇. 循环荷载对单裂隙岩体疲劳损伤的影响. 长沙理工大学学报(自然科学版). 2023(02): 125-136 .
      6. 王瑞红,危灿,刘杰,黎照,谭亿虹. 循环加卸载下节理砂岩宏细观损伤破坏机制研究. 岩石力学与工程学报. 2023(04): 810-820 .
      7. 李克升,刘传孝. 梯级等幅周期循环荷载作用下双裂隙黄砂岩力学特性试验研究. 岩石力学与工程学报. 2023(08): 1945-1958 .
      8. 梁海安,贺苗,张娟. 倾斜闭合节理类黏土岩循环荷载作用下力学特性研究. 世界核地质科学. 2023(S1): 554-560 .
      9. 袁和川,阿比尔的,张洁,丛宇,刘明维,蒲运杰,李浩田. 分级循环加卸载下饱水细黄砂岩的变形破坏特征试验研究. 岩石力学与工程学报. 2023(S2): 3943-3955 .
      10. Jianan Yang,Pengxian Fan,Mingyang Wang,Jie Li,Lu Dong. Experimental study on the irreversible displacement evolution and energy dissipation characteristics of disturbance instability of regular joints. Deep Underground Science and Engineering. 2023(01): 20-36 .
      11. 姜屏,王智超,肖景平,王伟,李娜,陈业文,吴二鲁. 不同循环加载模式下改性铁尾矿砂的变形特性研究. 岩土工程学报. 2023(S2): 104-109 . 本站查看
      12. 俞缙,姚玮,任文斌,樊志忠,秦伟. 高应力下大理岩循环扰动变形规律及一种破坏前兆特征. 岩土工程学报. 2022(08): 1521-1527 . 本站查看
      13. 朱要亮,俞缙,许汉华,马林建,刘雪莹,姚玮,任崇鸿. 大理岩短时蠕变–低周疲劳交替作用力学特性试验研究. 岩土工程学报. 2022(11): 2115-2124 . 本站查看
      14. 唐欣,俞缙,林立华,高海东,李刚,林植超. 岩石疲劳应力等效化及非线性疲劳变形本构模型. 岩土工程学报. 2021(01): 102-111 . 本站查看
      15. 苗胜军,王辉,杨鹏锦,王亚欣. 近疲劳强度循环荷载对泥质石英粉砂岩力学特性影响研究. 岩土力学. 2021(08): 2109-2119 .
      16. 赵博,徐涛,杨圣奇,付腾飞. 循环载荷作用下高应力岩石疲劳损伤破坏数值模拟与试验研究. 中南大学学报(自然科学版). 2021(08): 2725-2735 .

      Other cited types(14)

    Catalog

      Article views PDF downloads Cited by(30)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return