Citation: | ZHU Junyu, PEI Lihua, GUI Yue. Characteristics and mechanism of adhesion between organic clay soil and metal surface[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 605-615. DOI: 10.11779/CJGE20221415 |
[1] |
任露泉. 土壤黏附力学[M]. 北京: 机械工业出版社, 2011.
REN Luquan. Soil Adhesion Mechanics[M]. Beijing: China Machine Press, 2011. (in Chinese)
|
[2] |
刘琦, 漆采玲, 马雯波, 等. 深海底质土-金属界面间黏附特性试验研究[J]. 岩土力学, 2019, 40(2): 701-708. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902033.htm
LIU Qi, QI Cailing, MA Wenbo, et al. Experimental study of adhesion between deep-sea sediment and metal surface[J]. Rock and Soil Mechanics, 2019, 40(2): 701-708. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902033.htm
|
[3] |
SASS I, BURBAUM U. A method for assessing adhesion of clays to tunneling machines[J]. Bulletin of Engineering Geology and the Environment, 2009, 68(1): 27-34. doi: 10.1007/s10064-008-0178-6
|
[4] |
FEINENDEGEN M, ZIEGLER M, SPAGNOLI G, et al. A new laboratory test to evaluate the problem of clogging in mechanical tunnel driving with EPB-shields[C]// ISRM International Symposium-EUROCK 2010. OnePetro, 2010.
|
[5] |
HOLLMANN F S, THEWES M. Assessment method for clay clogging and disintegration of fines in mechanised tunnelling[J]. Tunnelling and Underground Space Technology, 2013, 37: 96-106. doi: 10.1016/j.tust.2013.03.010
|
[6] |
邱长林, 张庆建, 闫澍旺, 等. 黏土黏附力试验研究[J]. 岩土力学, 2017, 38(5): 1267-1272. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201705006.htm
QIU Changlin, ZHANG Qingjian, YAN Shuwang, et al. Experimental study of adhesion of clay[J]. Rock and Soil Mechanics, 2017, 38(5): 1267-1272. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201705006.htm
|
[7] |
BASMENJ A K, MIRJAVAN A, GHAFOORI M, et al. Assessment of the adhesion potential of kaolinite and montmorillonite using a pull-out test device[J]. Bulletin of Engineering Geology and the Environment, 2017, 76(4): 1507-1519. doi: 10.1007/s10064-016-0921-3
|
[8] |
BURBAUM U, SASS I. Physics of adhesion of soils to solid surfaces[J]. Bulletin of Engineering Geology and the Environment, 2017, 76(3): 1097-1105. doi: 10.1007/s10064-016-0875-5
|
[9] |
AZADEGAN B, MASSAH J. Effect of temperature on adhesion of clay soil to steel[J]. Ceretari Agronomice in Moldova, 2012, 2(150): 21-27.
|
[10] |
谭超. 黏土与盾构刀盘之间黏附特性研究[D]. 北京: 北京交通大学, 2021.
TAN Chao. Study on Adhesion Between Clay and Shield Cutterhead[D]. Beijing: Beijing Jiaotong University, 2021. (in Chinese)
|
[11] |
张先伟, 黎伟, 王勇, 等. 疏浚土的附着力特性试验研究[J]. 水运工程, 2014(3): 45-50, 56. https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201403012.htm
ZHANG Xianwei, LI Wei, WANG Yong, et al. Test research on adhesion characteristics of dredged soils[J]. Port & Waterway Engineering, 2014(3): 45-50, 56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYGC201403012.htm
|
[12] |
李俊伟, 佟金, 胡斌, 等. 不同含水率黏重黑土与触土部件互作的离散元仿真参数标定[J]. 农业工程学报, 2019, 35(6): 130-140. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201906016.htm
LI Junwei, TONG Jin, HU Bin, et al. Calibration of parameters of interaction between clayey black soil with different moisture content and soil-engaging component in northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(6): 130-140. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201906016.htm
|
[13] |
HUAT B B K, KAZEMIAN S, PRASAD A, et al. State of an art review of peat: General perspective[J]. International Journal of Physical Sciences, 2011, 6(8): 1988-1996.
|
[14] |
DOMZAL H. Preliinary studies of the influence of moisture on physico-mechanical properties of some soils with regard to estimation of optimum working conditions of implements[J]. Polish Jouranl of Soil Science, 1970, 3(1): 61-70.
|
[15] |
MATERIALS A S F T. Standard Classification of Peat Samples by Laboratory Testing[S]. PA, USA: West Conshohocken, 2013.
|
[16] |
公路土工试验规程: JTG 3430—2020[S]. 北京: 人民交通出版社, 2020.
Test Methods of Soils for Highway Engineering: JTG 3430—2020[S]. Beijing: China Communications Press, 2020. (in Chinese)
|
[17] |
土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.
Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
|
[18] |
FAWZI H, RACHID Z. Effects of organic matter on physical properties of dredged marine sediments[J]. Waste and Biomass Valorization, 2018, 11(1): 389-401.
|
[19] |
RASHID M A, BROWN J D. Influence of marine organic compounds on the engineering properties of a remoulded sediment[J]. Engineering Geology, 1975, 9(2): 141-154. doi: 10.1016/0013-7952(75)90036-8
|
[20] |
BOOTH J S, DAHL A G. A note on the relationships between organic matter and some geotechnical properties of a marine sediment[J]. Marine Geotechnology, 1986, 6(3): 281-297. doi: 10.1080/10641198609388191
|
[21] |
FEINENDEGEN M, ZIEGLER M, WEH M, et al. Clogging during EPB-tunnelling: occurrence, classification and new manipulation methods[C]//Proceedings ITA-AITES World Tunnel Congress, Helsinki. 2011.
|
[22] |
WANG S, LIU P, ZHONG J. Influence factors of the adhesion strength of clayey soil[C]// Civil Infrastructures Confronting Severe Weathers and Climate Changes Conference. Springer, Cham, 2021.
|
[23] |
THEWES M, HOLLMANN F. Assessment of clay soils and clay-rich rock for clogging of TBMs[J]. Tunnelling and Underground Space Technology, 2016, 57: 122-128. doi: 10.1016/j.tust.2016.01.010
|
[24] |
杨益, 朱文骏, 李兴高, 等. 老黏土地层土压盾构刀盘堵塞渣土改良效果评价方法[J]. 北京交通大学学报, 2019, 43(6): 43-49, 61. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201906006.htm
YANG Yi, ZHU Wenjun, LI Xinggao, et al. Evaluation method for muck conditioning of hard clay to prevent clogging in EPB tunnelling[J]. Journal of Beijing Jiaotong University, 2019, 43(6): 43-49, 61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201906006.htm
|
[25] |
黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000.
HUANG Changyong. Soil Science[M]. Beijing: China Agriculture Press, 2000. (in Chinese)
|
[26] |
李少博, 徐英德, 高晓丹, 等. 离子界面行为在土壤有机无机复合体形成中的作用[J]. 中国生态农业学报, 2018, 26(11): 1682-1691. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201811016.htm
LI Shaobo, XU Yingde, GAO Xiaodan, et al. The role of ionic interfacial behaviors in formation of soil organic-inorganic complexes[J]. Chinese Journal of Eco-Agriculture, 2018, 26(11): 1682-1691. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201811016.htm
|
[27] |
TAVENAS F A, JEAN P, LEBLOND P, et al. The permeability of natural soft clays. Part II: Permeability characteristics[J]. Canadian Geotechnical Journal, 2011, 20(4): 645-660.
|
[28] |
王磊, 应蓉蓉, 石佳奇, 等. 土壤矿物对有机质的吸附与固定机制研究进展[J]. 土壤学报, 2017, 54(4): 805-818. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201704001.htm
WANG Lei, YING Rongrong, SHI Jiaqi, et al. Advancement in study on adsorption of organic matter on soil minerals and its mechanism[J]. Acta Pedologica Sinica, 2017, 54(4): 805-818. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201704001.htm
|
[29] |
SOLLINS P, SWANSTON C, KLEBER M, et al. Organic C and N stabilization in a forest soil: evidence from sequential density fractionation[J]. Soil Biology and Biochemistry, 2006, 38(11): 3313-3324. doi: 10.1016/j.soilbio.2006.04.014
|
[30] |
NAVON R, HERNANDEZ-RUIZ S, CHOROVER J, et al. Interactions of carbamazepine in soil: effects of dissolved organic matter[J]. Journal of Environmental Quality, 2011, 40(3): 942-948. doi: 10.2134/jeq2010.0446
|
[31] |
傅积平. 土壤结合态腐殖质分组测定[J]. 土壤通报, 1983, 40(3): 36-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB198302012.htm
FU Jiping. Grouping determination of soil-bound humus[J]. Chinese Journal of Soil Science, 1983, 40(3): 36-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB198302012.htm
|
[32] |
LAVALLEE J M, SOONG J L, COTRUFO M F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century[J]. Global Change Biology, 2020, 26(1): 261-273. doi: 10.1111/gcb.14859
|
[33] |
PAPUGA K, KASZUBKIEWICZ J, KAWALKO D, et al. Effect of organic matter removal by hydrogen peroxide on the determination of soil particle size distribution using the dynamometer method[J]. Agriculture-Basel, 2022, 12(2): 1-14.
|
[34] |
桂跃, 余志华, 刘海明, 等. 高原湖相泥炭土次固结特性及机理分析[J]. 岩土工程学报, 2015, 37(8): 1390-1398. doi: 10.11779/CJGE201508005
GUI Yue, YU Zhihua, LIU Haiming, et al. Secondary consolidation properties and mechanism of plateau lacustrine peaty soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1390-1398. (in Chinese) doi: 10.11779/CJGE201508005
|
[35] |
蒋忠信. 滇池泥炭土[M]. 成都: 西南交通大学出版社, 1994.
JIANG Zhongxin. Dianchi Peat Soil[M]. Chengdu: Southwest Jiaotong University Press, 1994. (in Chinese)
|
1. |
赵延辉,郑武略,张恒宾,王瑞显,陈浩. 输电线路塔基卸荷损伤砂岩循环加卸载特性研究. 工程勘察. 2025(05): 14-20 .
![]() | |
2. |
王瑞红,贾敬茹,骆浩,危灿,张健锋,贾依行. 峰前峰后循环加卸载对砂岩动力特性的影响. 长江科学院院报. 2024(03): 94-101 .
![]() | |
3. |
陈兴周,白亚妮,陈莉丽,马彬,王文瑞,龚盛. 高渗压与循环加卸载环境下开挖卸荷岩体力学特性试验研究. 岩土工程学报. 2024(04): 737-745 .
![]() | |
4. |
姜德义,杨镇宇,范金洋,李宗泽,锁进杰,陈结. 盐岩循环加卸载过程中的速率效应试验研究. 岩土力学. 2023(02): 403-414 .
![]() | |
5. |
鲜振兴,许旭堂,杨枫,简文彬,徐祥,李光杰,刘道奇. 循环荷载对单裂隙岩体疲劳损伤的影响. 长沙理工大学学报(自然科学版). 2023(02): 125-136 .
![]() | |
6. |
王瑞红,危灿,刘杰,黎照,谭亿虹. 循环加卸载下节理砂岩宏细观损伤破坏机制研究. 岩石力学与工程学报. 2023(04): 810-820 .
![]() | |
7. |
李克升,刘传孝. 梯级等幅周期循环荷载作用下双裂隙黄砂岩力学特性试验研究. 岩石力学与工程学报. 2023(08): 1945-1958 .
![]() | |
8. |
梁海安,贺苗,张娟. 倾斜闭合节理类黏土岩循环荷载作用下力学特性研究. 世界核地质科学. 2023(S1): 554-560 .
![]() | |
9. |
袁和川,阿比尔的,张洁,丛宇,刘明维,蒲运杰,李浩田. 分级循环加卸载下饱水细黄砂岩的变形破坏特征试验研究. 岩石力学与工程学报. 2023(S2): 3943-3955 .
![]() | |
10. |
Jianan Yang,Pengxian Fan,Mingyang Wang,Jie Li,Lu Dong. Experimental study on the irreversible displacement evolution and energy dissipation characteristics of disturbance instability of regular joints. Deep Underground Science and Engineering. 2023(01): 20-36 .
![]() |
|
11. |
姜屏,王智超,肖景平,王伟,李娜,陈业文,吴二鲁. 不同循环加载模式下改性铁尾矿砂的变形特性研究. 岩土工程学报. 2023(S2): 104-109 .
![]() | |
12. |
俞缙,姚玮,任文斌,樊志忠,秦伟. 高应力下大理岩循环扰动变形规律及一种破坏前兆特征. 岩土工程学报. 2022(08): 1521-1527 .
![]() | |
13. |
朱要亮,俞缙,许汉华,马林建,刘雪莹,姚玮,任崇鸿. 大理岩短时蠕变–低周疲劳交替作用力学特性试验研究. 岩土工程学报. 2022(11): 2115-2124 .
![]() | |
14. |
唐欣,俞缙,林立华,高海东,李刚,林植超. 岩石疲劳应力等效化及非线性疲劳变形本构模型. 岩土工程学报. 2021(01): 102-111 .
![]() | |
15. |
苗胜军,王辉,杨鹏锦,王亚欣. 近疲劳强度循环荷载对泥质石英粉砂岩力学特性影响研究. 岩土力学. 2021(08): 2109-2119 .
![]() | |
16. |
赵博,徐涛,杨圣奇,付腾飞. 循环载荷作用下高应力岩石疲劳损伤破坏数值模拟与试验研究. 中南大学学报(自然科学版). 2021(08): 2725-2735 .
![]() |