YAN Junbiao, KONG Lingwei, LI Tianguo, ZHOU Zhenhua. Effects of variable shear rate on residual strength of expansive soils and its engineering enlightenment[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1445-1452. DOI: 10.11779/CJGE20230350
    Citation: YAN Junbiao, KONG Lingwei, LI Tianguo, ZHOU Zhenhua. Effects of variable shear rate on residual strength of expansive soils and its engineering enlightenment[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(7): 1445-1452. DOI: 10.11779/CJGE20230350

    Effects of variable shear rate on residual strength of expansive soils and its engineering enlightenment

    More Information
    • Received Date: April 20, 2023
    • Available Online: July 11, 2024
    • The residual strength has a key impact on the deformation and stability of landslides. The whole process of landslide movement often involves the phenomenon of variable shear rates, which is manifested by the acceleration rate and deceleration rate. In order to investigate the effects of the acceleration and deceleration rates on the residual strength of expansive soils, a series of ring shear tests with variable shear rates are conducted to analyze the variation rules of residual strength of expansive soils under different acceleration and deceleration rates, and the role of the effects of the acceleration and deceleration rates of the residual strength at different deformation stages of landslides is discussed. The results show that both the acceleration rate and the deceleration rate have a strengthening effect on the residual strength (positive effects), and the strengthening effects of the acceleration rate on the residual strength are more significant than those of the deceleration rate. The effects of the acceleration and deceleration rates on the residual strength are more significant under the larger normal stress conditions. The effects of the acceleration and deceleration rates on the residual strength are considered to be the result of changes in the state of the shear plane caused by changes of the shear rate, and the soil particles in the shear plane must be readjusted to adapt to the new shear rate conditions under variable shear rate conditions, resulting in changes in the residual strength. During the whole process of landslide movement, the effects of the acceleration and deceleration rates on the residual strength are beneficial for the evolution of landslides towards a deceleration accumulation state.
    • [1]
      孔令伟, 陈正汉. 特殊土与边坡技术发展综述[J]. 土木工程学报, 2012, 45(5): 141-161. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201205016.htm

      KONG Lingwei, CHEN Zhenghan. Advancement in the techniques for special soils and slopes[J]. China Civil Engineering Journal, 2012, 45(5): 141-161. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201205016.htm
      [2]
      KATTI D R, SRINIVASAMURTHY L, KATTI K S. Molecular modeling of initiation of interlayer swelling in Na–montmorillonite expansive clay[J]. Canadian Geotechnical Journal, 2015, 52(9): 1385-1395. doi: 10.1139/cgj-2014-0309
      [3]
      吴珺华, 袁俊平, 卢廷浩. 非饱和膨胀土边坡的稳定性分析[J]. 岩土力学, 2008, 29(增刊1): 363-367. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1072.htm

      WU Junhua, YUAN Junping, LU Tinghao. Stability analysis of unsaturated expansive soil slope[J]. Rock and Soil Mechanics, 2008, 29(S1): 363-367. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2008S1072.htm
      [4]
      包承纲. 非饱和土的性状及膨胀土边坡稳定问题[J]. 岩土工程学报, 2004, 26(1): 1-15. http://cge.nhri.cn/cn/article/id/11325

      BAO Chenggang. Behavior of unsaturated soil and stability of expansive soil slope[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 1-15. (in Chinese) http://cge.nhri.cn/cn/article/id/11325
      [5]
      NIU X Q. The first stage of the middle-line south-to-north water-transfer project[J]. Engineering, 2022, 16: 21-28. doi: 10.1016/j.eng.2022.07.001
      [6]
      YAN J B, ZOU Z X, MU R, et al. Evaluating the stability of Outang landslide in the Three Gorges Reservoir Area considering the mechanical behavior with large deformation of the slip zone[J]. Natural Hazards, 2022, 112(3): 2523-2547. doi: 10.1007/s11069-022-05276-0
      [7]
      LIAN B Q, PENG J B, WANG X G, et al. Moisture content effect on the ring shear characteristics of slip zone loess at high shearing rates[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(2): 999-1008. doi: 10.1007/s10064-019-01597-w
      [8]
      范志强, 唐辉明, 谭钦文, 等. 滑带土环剪试验及其对水库滑坡临滑强度的启示[J]. 岩土工程学报, 2019, 41(9): 1698-1706. doi: 10.11779/CJGE201909014

      FAN Zhiqiang, TANG Huiming, TAN Qinwen, et al. Ring shear tests on slip soils and their enlightenment to critical strength of reservoir landslides[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1698-1706. (in Chinese) doi: 10.11779/CJGE201909014
      [9]
      MIAO H B, WANG G H. Effects of clay content on the shear behaviors of sliding zone soil originating from muddy interlayers in the Three Gorges Reservoir, China[J]. Engineering Geology, 2021, 294: 106380. doi: 10.1016/j.enggeo.2021.106380
      [10]
      ZHU R S, XIE W L, LIU Q Q, et al. Shear behavior of sliding zone soil of loess landslides via ring shear tests in the South Jingyang Plateau[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(6): 244. doi: 10.1007/s10064-022-02719-7
      [11]
      LIAN B Q, WANG X G, PENG J B, et al. Shear rate effect on the residual strength characteristics of saturated loess in naturally drained ring shear tests[J]. Natural Hazards and Earth System Sciences, 2020, 20(10): 2843-2856. doi: 10.5194/nhess-20-2843-2020
      [12]
      MIAO H B, WANG G H. Shear rate effect on the residual strength of saturated clayey and granular soils under low- to high-rate continuous shearing[J]. Engineering Geology, 2022, 308: 106821. doi: 10.1016/j.enggeo.2022.106821
      [13]
      KANG X, WANG S, WU W, et al. Residual state rate effects of shear-zone soil regulating slow-to-fast transition of catastrophic landslides[J]. Engineering Geology, 2022, 304: 106692. doi: 10.1016/j.enggeo.2022.106692
      [14]
      孙涛, 洪勇, 栾茂田, 等. 采用环剪仪对超固结黏土抗剪强度特性的研究[J]. 岩土力学, 2009, 30(7): 2000-2004, 2010. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200907024.htm

      SUN Tao, HONG Yong, LUAN Maotian, et al. Shear strength behavior of overconsolidated clay in ring shear tests[J]. Rock and Soil Mechanics, 2009, 30(7): 2000-2004, 2010. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200907024.htm
      [15]
      周葆春, 王江伟, 单丽霞, 等. 不同膨胀潜势等级的膨胀土残余强度环剪试验研究[J]. 岩土工程学报, 2024, 46(6): 1325-1331. doi: 10.11779/CJGE20230225

      ZHOU Baochun, WANG Jiangwei, SHAN Lixia, et al. Torsional ring shear tests on residual strength of low, medium, high swelling soils[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(6): 1325-1331. (in Chinese) doi: 10.11779/CJGE20230225
      [16]
      Standard Test Method for Torsional Ring Shear Test to Determine Drained Residual Shear Strength of Fine-Grained Soils: ASTM D6467-21[S]. West Conshohocken: ASTM International, 2021.
      [17]
      谢辉辉, 许振浩, 刘清秉, 等. 干湿循环路径下弱膨胀土峰值及残余强度演化研究[J]. 岩土力学, 2019, 40(增刊1): 245-252. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1037.htm

      XIE Huihui, XU Zhenhao, LIU Qingbing, et al. Evolution of peak strength and residual strength of weak expansive soil under drying-wetting cycle paths[J]. Rock and Soil Mechanics, 2019, 40(S1): 245-252. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1037.htm
      [18]
      王顺, 项伟, 崔德山, 等. 不同环剪方式下滑带土残余强度试验研究[J]. 岩土力学, 2012, 33(10): 2967-2972. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210016.htm

      WANG Shun, XIANG Wei, CUI Deshan, et al. Study of residual strength of slide zone soil under different ring-shear tests[J]. Rock and Soil Mechanics, 2012, 33(10): 2967-2972. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210016.htm
      [19]
      KIMURA S, NAKAMURA S, VITHANA S B, et al. Shearing rate effect on residual strength of landslide soils in the slow rate range[J]. Landslides, 2014, 11(6): 969-979. doi: 10.1007/s10346-013-0457-6
      [20]
      DUONG N T, SUZUKI M, VAN HAI N. Rate and acceleration effects on residual strength of Kaolin and Kaolin-bentonite mixtures in ring shearing[J]. Soils and Foundations, 2018, 58(5): 1153-1172. doi: 10.1016/j.sandf.2018.05.011
      [21]
      YAN J B, KONG L W, WANG J T. Evolution law of small strain shear modulus of expansive soil: from a damage perspective[J]. Engineering Geology, 2023, 315: 107017. doi: 10.1016/j.enggeo.2023.107017
      [22]
      洪勇, 孙涛, 栾茂田, 等. 土工环剪仪的开发及其应用研究现状[J]. 岩土力学, 2009, 30(3): 628-634. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200903011.htm

      HONG Yong, SUN Tao, LUAN Maotian, et al. Development and application of geotechnical ring shear apparatus: an overview[J]. Rock and Soil Mechanics, 2009, 30(3): 628-634. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200903011.htm
      [23]
      MAZZANTI P, BOZZANO F, CIPRIANI I, et al. New insights into the temporal prediction of landslides by a terrestrial SAR interferometry monitoring case study[J]. Landslides, 2015, 12(1): 55-68. doi: 10.1007/s10346-014-0469-x
      [24]
      何建乔, 魏厚振, 孟庆山, 等. 大位移剪切下钙质砂破碎演化特性[J]. 岩土力学, 2018, 39(1): 165-172. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801021.htm

      HE Jianqiao, WEI Houzhen, MENG Qingshan, et al. Evolution of particle breakage of calcareous sand under large displacement shearing[J]. Rock and Soil Mechanics, 2018, 39(1): 165-172. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801021.htm
      [25]
      BISHOP A W, GREEN G E, GARGA V K, et al. A new ring shear apparatus and its application to the measurement of residual strength[J]. Géotechnique, 1971, 21(4): 273-328. doi: 10.1680/geot.1971.21.4.273
      [26]
      殷宗泽, 徐彬. 反映裂隙影响的膨胀土边坡稳定性分析[J]. 岩土工程学报, 2011, 33(3): 454-459. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201103027.htm

      YIN Zongze, XU Bin. Slope stability of expansive soil under fissure influence[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 454-459. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201103027.htm
      [27]
      LU J F, KONG L W, LIU X Y, et al. Multihazard risk model for reliability analysis of expansive soil landslide based on T–S fuzzy logic[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2022, 8(2): 04022008. doi: 10.1061/AJRUA6.0001225
    • Cited by

      Periodical cited type(23)

      1. 陈欣,安然,张先伟,陈昶,袁童. MICP固化花岗岩残积土的崩解特性. 长江科学院院报. 2025(02): 138-144+171 .
      2. 徐敏,刘正明,罗元喜,许宝田,刘开斌. 基于旁压试验的常州地区典型砂土变形特性研究. 工程勘察. 2024(07): 15-21 .
      3. 杨雪强,王坤,刘攀,朱海平,林楷彦. 广州原状花岗岩残积土非饱和力学特性的试验研究. 水利水电技术(中英文). 2024(06): 196-206 .
      4. 宋伟,房江锋,杜琦,李芬. 某项目抗拔桩承载力不足原因分析及处理研究. 工程质量. 2024(S2): 41-45 .
      5. 房江锋,张思祺,杜琦. 灌注桩抗拔承载力不足分析及应对措施研究. 低温建筑技术. 2024(12): 66-71 .
      6. 舒荣军,孔令伟,周振华,简涛,李甜果. 卸荷-增孔压条件下花岗岩残积土的力学特性. 岩土力学. 2023(02): 473-482 .
      7. 廖燕宏,王冉,夏玉云,乔建伟,贾如宾,杨晓鹏. 安哥拉花岗岩残积土强夯法地基处理试验研究. 施工技术(中英文). 2023(07): 149-154 .
      8. 陈欣,安然,汪亦显,陈昶. 胶结液浓度对MICP固化残积土力学性能影响及机理研究. 水利与建筑工程学报. 2023(06): 100-106+149 .
      9. 张晗,杨石飞,王琳,林天翔. 上海地区软土旁压加卸载变形特性试验研究. 岩土工程学报. 2022(04): 769-777 . 本站查看
      10. 冯义武,彭倞,岳娟. 亚湖水库花岗岩风化残积土防渗应用研究. 水利水电快报. 2022(04): 61-66+73 .
      11. 朱旻,陈湘生,张国涛,庞小朝,苏栋,刘继强. 花岗岩残积土硬化土模型参数反演及工程应用. 岩土力学. 2022(04): 1061-1072 .
      12. 齐信,黎清华,焦玉勇,谭飞. 梧州市巨厚层花岗岩风化壳垂直分带标准及工程地质特征研究. 工程地质学报. 2022(02): 407-416 .
      13. 安然,孔令伟,师文卓,郭爱国,张先伟. 结构性黏土的原位刚度衰减规律及数学表征. 岩土力学. 2022(S1): 410-418 .
      14. 安然,孔令伟,张先伟,郭爱国,柏巍. 基于原位孔内剪切试验的残积土强度指标及风化程度影响评价. 应用基础与工程科学学报. 2022(05): 1275-1286 .
      15. 舒荣军,孔令伟,黎澄生,刘炳恒,简涛. 考虑先期卸荷静偏应力的花岗岩残积土动力特性研究. 振动与冲击. 2022(17): 93-100 .
      16. 苗永红,卜梓轩,王玲,苏靖凤,殷杰. 扰动对软土累积排水量影响试验研究. 西安理工大学学报. 2022(03): 421-425 .
      17. 舒荣军,孔令伟,王俊涛,简涛,周振华. 考虑先期卸荷影响的花岗岩残积土湿化特性试验研究. 岩土工程学报. 2022(S1): 154-159+165 . 本站查看
      18. 王斌,韩幽铭,周欣,陈成,张先伟,桂蕾. 太湖湖相黏土层剪切模量衰减特性的原位测试研究. 岩土力学. 2021(07): 2031-2040 .
      19. 胡华,吴轩,张越. 基于降雨滑坡模拟试验的花岗岩残积土边坡破坏模式分析. 厦门大学学报(自然科学版). 2021(06): 1098-1102 .
      20. 安然,孔令伟,张先伟. 残积土孔内剪切试验的强度特性及广义邓肯–张模型研究. 岩土工程学报. 2020(09): 1723-1732 . 本站查看
      21. 安然,孔令伟,黎澄生,罗晓倩. 炎热多雨气候下花岗岩残积土的强度衰减与微结构损伤规律. 岩石力学与工程学报. 2020(09): 1902-1911 .
      22. 安然,孔令伟,柏巍,黎澄生. 单轴荷载下残积土的电阻率损伤模型及干湿循环效应. 岩石力学与工程学报. 2020(S1): 3159-3167 .
      23. 易军. 风荷载下的黄家仑地区残积土动静力特性研究. 长沙大学学报. 2020(05): 32-37 .

      Other cited types(7)

    Catalog

      Article views (325) PDF downloads (69) Cited by(30)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return