• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SHENG Dai-chao, ZHANG Sheng, LI Xi. Effects of train loads on frost heave of embankments[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2186-2191.
Citation: SHENG Dai-chao, ZHANG Sheng, LI Xi. Effects of train loads on frost heave of embankments[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2186-2191.

Effects of train loads on frost heave of embankments

More Information
  • Received Date: April 14, 2013
  • Published Date: November 30, 2013
  • Substantial frost heave is observed in coarse fills in high-speed railway embankment. These coarse fills have very low water content and are located above the groundwater. In an attempt to explain the unexpected frost heave, it is proposed that the cyclic train loads cause the development of the excess pore water pressure in the underlying subgrade soils and hence #x02018;pump#x02019; up the water to the frost front, which in turn feeds the formation of ice and results in continuous frost heave. A simple quantitative model is developed to simulate the pumping-enhanced frost heave. The numerical results show that the proposed mechanism can indeed provide a legitimate explanation for the otherwise unexpected frost heave. The engineering implications of this new frost heave mechanism are also discussed, in the context of designing frost heave mitigation measures in seasonally frozen regions.
  • [1]
    BESKOW G. Soil freezing and frost heaving with special application to roads and railroads[J]. Swedish Geological Survey Year Book 1935, 26(3), Series C, No. 375.
    [2]
    CHENG G D. The mechanism of repeated-segregation of the formation of thick layered ground ice[J]. Cold Regions Science and Technology, 1983, 8: 57-66.
    [3]
    李明霞. 秦沈客运专线涵洞洞顶填土冻胀机理和处理措施研究[D]. 北京: 北京交通大学, 2008: 8-17. (LI Ming-xia. Study on heaving mechanism and treatment measure of embankment filling on culvert of Qinhuangdao to Shenyang passage-dedicated railway[D]. Beijing: Beijing Jiaotong University, 2008: 8-17. (in Chinese))
    [4]
    MACHIIK. Mud pumping on tracjs-present state and counter measures[J]. Japanese Railway Engineering, 1978, 17(4): 20-21.
    [5]
    SELIG E T, WATER J M. Track geotechnology and substructure management[M]. London: Thomas Telford, 1994.
    [6]
    张建俊. 冻融循环作用下季冻区高铁路基沉降预测的试验研究[D]. 阜新: 辽宁工程技术大学, 2009: 7-9. (ZHANG Jian-jun. Experimental research on the prediction about the subsidence of high-speed railway subgrade under the action of freeze-thaw cycle in seasonal frozen soil region[D]. Fuxin: Liaoning Technical University, 2009: 7-9. (in Chinese))
    [7]
    刘 华, 牛富俊, 牛永红, 等. 冻土区高速铁路路基填料及防冻层设置研究[J]. 岩石力学与工程学报, 2011, 30(12): 2549-2557. (LIU Hua, NIU Fu-Jun, NIU Yong-Hong, et al. Study of design of filling material and setting anti-frost layer for high-speed railway roadbed in seasonally frozen regions[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(12): 2549-2557. (in Chinese))
    [8]
    LIU Hua, NIU Fu-jun, NIU Yong-hong, et al. Experimental and numerical investigation on temperature characteristics of high-speed railway's embankment in seasonal frozen regions[J]. Cold Regions Science and Technology, 2012, 81: 55-64.
    [9]
    WONG R C K, THOMSON P R, CHOI E S C. In situ pore pressure response of native peat and soil under train load: a case study[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(10): 1360-1369.
    [10]
    ALOBAIDI I, HOARE D J. The development of pore water pressure at the subgrade-subbase interface of a highway pavement and its effect on the pumping of fines[J]. Geotextiles and Geomembranes, 1996, 14: 111-135.
    [11]
    KETTIL P, LENHOF B, RUNESSON K, et al. Coupled simulation of wave propagation and water flow in soil induced by high-speed trains[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(11): 1311-1319.
    [12]
    SEED H B, LEE K L. Liquefaction of saturated soil during cyclic loading[J]. Journal of the Soil Mechanics and Foundations Division (ASCE), 1966, 6: 101-110.
    [13]
    DAFALIAS Y F. Bounding surface plasticity I: Mathematical foundation and hypoelasticity[J]. Journal of Engineering Mechanics, ASCE, 1986, 112(9): 966-987.
    [14]
    KOLYMBAS D. An outline of hypoplasticity[J]. Archive Applied Mechanics, 1991, 61(3): 143-151.
    [15]
    PASTOR M, ZIENKIEWICZ O, CHAN A. Generalized plasticity and the modelling of soil behaviour[J]. International. Journal of Numerical and Analytical Methods in Geomechanics, 1990, 14(3): 151-190.
    [16]
    BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: I Low-frequency range[J]. Journal of the Acoustical Society of America, 1956, 28(2): 168-78.
    [17]
    SKEMPTON A W. The pore-pressure coefficient A and B[J]. G#x000e9;otechnique, 1954, 4: 143-147.
    [18]
    LI Shuang-yang, LAI Yuan-ming, ZHANG Shu-juan, et al. Dynamic responses of Qinghai-Tibet railway embankment subjected to train loading in different seasons[J]. Soil Dynamics and Earthquake Engineering, 2012, 32: 1-14.
    [19]
    SHENG D, AXELSSON K, KNUTSSON S. Frost heave due to ice lens formation in freezing soils: 1 Theory and verification[J]. Nordic Hydrology, 1995, 26(2): 125-146.
    [20]
    SHENG D, AXELSSON K, KNUTSSON S. Frost heave due to ice lens formation in freezing soils: 2 Field application[J]. Nordic Hydrology, 1995, 26(2): 147-168.
    [21]
    SHENG Dai-chao, ZHANG Sheng, YU Zhi-Wu, et al. Assessing frost susceptibility of soils using PCHeave[J]. Cold Regions Science and Technology, 2013, 95: 27-38.
    [22]
    HILLEL D. Soil and water: physical principles and processes[M]. New York: Academic Press, 1971.
    [23]
    TB10020#x02014;2009高速铁路设计规范(试行)[S]. 2009. (TB10020#x02014;2009 Code for design of high speed railway[S]. 2009. (in Chinese))
  • Cited by

    Periodical cited type(10)

    1. 巨凯萱,赵婷婷,刘嘉英,冯云田,王志华. 级配对颗粒材料力学特性影响的卷积神经网络分析. 中国科学:技术科学. 2025(01): 115-132 .
    2. 朱俊宇,汪淼,王桥,汪泾周,马刚,周伟. 球谐级数对数字重构颗粒形状及堆积特性的影响研究. 武汉大学学报(工学版). 2025(03): 343-352 .
    3. 郭晨,陶玉敬,宋章,杜宇本,杨情兵. 川西北某拟建高速公路隧道口高位危岩特征及危险性评价. 铁道技术标准(中英文). 2024(01): 20-28 .
    4. 王晓,薛玉君,程波,刘俊,李济顺. 矿石破碎颗粒黏结模型黏结键特征及表征. 河南理工大学学报(自然科学版). 2024(02): 41-48 .
    5. 刘鑫,徐新钰,黄良,钟源. 不同形状石英砂三轴剪切失稳研究. 西安科技大学学报. 2024(03): 532-542 .
    6. 朱礼臣. 隧道掏槽爆破岩块抛掷堆积形态的数值模拟. 工程爆破. 2024(03): 54-61 .
    7. 李有堂,武彤,李武强. 纤维增强树脂矿物复合材料的细观力学特性及损伤机理. 功能材料. 2024(10): 10127-10133+10141 .
    8. 王宇,刘玉龙,邱德昆,罗苗壮,涂良,唐凯,郭鹏. 钨粉颗粒级配对射孔弹药型罩密度的影响. 测井技术. 2024(06): 861-866 .
    9. 袁锦涛,韩培锋,欧小红,田述军,周梦缘,刘之葵,樊晓一. 基于DEM的滑坡碎屑流运动堆积特性研究. 自然灾害学报. 2023(03): 230-238 .
    10. 李培锋,王晖,吴雨辰,李斯涛,李春. 基于无人机影像的危岩体识别及公路地震风险研究. 地震工程学报. 2022(04): 777-785 .

    Other cited types(20)

Catalog

    Article views PDF downloads Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return