• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIANG Shui-hua1, 2, LI Dian-qing1, 2, ZHOU Chuang-bing1, 2. Non-intrusive stochastic finite element method for slope reliability analysis based on Latin hypercube sampling[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 70-76.
Citation: JIANG Shui-hua1, 2, LI Dian-qing1, 2, ZHOU Chuang-bing1, 2. Non-intrusive stochastic finite element method for slope reliability analysis based on Latin hypercube sampling[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 70-76.

Non-intrusive stochastic finite element method for slope reliability analysis based on Latin hypercube sampling

More Information
  • Received Date: June 05, 2013
  • Published Date: November 24, 2013
  • A non-intrusive stochastic finite element method based on the Latin hypercube sampling for slope reliability analysis is proposed. The finite element method for stress analysis of sliding surface is used to calculate the safety factor of slopes. The safety factor of slopes is explicitly expressed as the input random variables using the Hermite polynomial chaos expansion. The Latin hypercube sampling points are selected as the collocation points to calculate the coefficients of polynomial chaos expansion. An example of reliability analysis of natural slope at the left abutment of Jinping I Hydropower Station is presented to demonstrate the validity and capability of the proposed method. The results indicate the proposed non-intrusive stochastic finite element method based on the Latin hypercube sampling can effectively evaluate the reliability of high-steep rock slopes, which decouples the reliability analysis with finite element analysis of slope stability and produces sufficiently accurate reliability results. The coefficients of polynomial chaos expansion determined by the Latin hypercube sampling are more effective than those by the frequently-used probabilistic collocation method, since the number of sampling points required by the former are only approximately equal to that of unknown coefficients. The internal fiction angle of fault f42-9 at Jinping left abutment slope has a significant effect on the slope stability due to its largest sensitivity, followed by the internal fiction angle of III2 class rock mass, whereas the other variables affect the slope stability slightly. The Sobol’s indices used for representing the sensitivities of input uncertain parameters can provide a referential basis for working out the reinforcement schemes.
  • [1]
    LOW B K. Efficient probabilistic algorithm illustrated for a rock slope[J]. Rock Mechanics and Rock Engineering, 2008, 41(5): 715-734.
    [2]
    LI A J, CASSIDY M J, WANGA Y, et al. Parametric Monte Carlo studies of rock slopes based on the Hoek-Brown failure criterion[J]. Computers and Geotechnics, 2012, 45: 11-18.
    [3]
    TANG X S, LI D Q, CHEN Y F, et al. Improved knowledge-based clustered partitioning approach and its application to slope reliability analysis[J]. Computers and Geotechnics, 2012, 45: 34-43.
    [4]
    PARK H J, UM J G, WOO I, et al. The evaluation of the probability of rock wedge failure using the point estimate method[J]. Environmental Earth Sciences, 2012, 65(1): 353-361.
    [5]
    高 谦, 王思敬. 龙滩水电站船闸高边坡的可靠度分析[J]. 岩石力学与工程学报, 1991, 10(1): 83-95. (GAO Qian, WANG Si-jing. A reliability analysis of high rock slope for the Longtan hydropower project[J]. Chinese Journal of Rock Mechanics and Engineering, 1991, 10(1): 83-95. (in Chinese))
    [6]
    李典庆, 周创兵, 陈益峰, 等. 边坡可靠度分析的随机响应面法及程序实现[J]. 岩石力学与工程学报, 2010, 29(8): 1513-1523. (LI Dian-qing, ZHOU Chuang-bing, CHEN Yi-feng, et al. Reliability analysis of slope using stochastic response surface method and code implementation[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(8): 1513-1523. (in Chinese))
    [7]
    BERVEILLER M, SUDRET B, LEMAIRE M. Stochastic finite elements: a non intrusive approach by regression[J]. European Journal of Computational Mechanics, 2006, 15(1/2/3): 81-92.
    [8]
    李典庆, 蒋水华, 周创兵. 基于非侵入式随机有限元法的地下洞室可靠度分析[J]. 岩土工程学报, 2012, 34(1): 123-129. (LI Ding-qing, JIANG Shui-hua, ZHOU Chuang-bing. Reliability analysis of underground rock caverns using non-intrusive stochastic finite element method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 123-129. (in Chinese))
    [9]
    ISUKAPALLI S S. Uncertainty analysis of transport transformation models[D]. New Jersey: The State University of New Jersey, New Brunswick, 1999.
    [10]
    蒋水华, 李典庆, 周创兵. 随机响应面法最优概率配点数目分析[J]. 计算力学学报, 2012, 29(3): 345-351. (JIANG Shui-hua, LI Dian-qing, ZHOU Chuang-bing. Optimal probabilistic collocation points for stochastic response surface method[J]. Chinese Journal of Computational Mechanics, 2012, 29(3): 345-351. (in Chinese))
    [11]
    MCKAY M D, CONOVER W J, BECKMAN R J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 1979, 21(2): 239-245.
    [12]
    CHOI S K, CANFIELD R, GRANDHI R, PETTIT C. Polynomial chaos expansion with Latin hypercube sampling for estimating response variability[J]. AIAA Journal, 2004, 42(6): 1191-1198.
    [13]
    CHOI S K, CANFIELD R A, GRANDHI R V. Estimation of structural reliability for Gaussian random fields[J]. Structure and Infrastructure Engineering, 2006, 2(3/4): 161-173.
    [14]
    吴振君, 王水林, 葛修润. LHS方法在边坡可靠度分析中的应用[J]. 岩土力学, 2010, 31(4): 1047-1054. (WU Zhen-jun, WANG Shui-lin, GE Xiu-run. Application of Latin hypercube sampling technique to slope reliability analysis[J]. Rock and Soil Mechanics, 2010, 31(4): 1047-1054. (in Chinese))
    [15]
    马建全, 李广杰, 徐佩华, 等. 基于拉丁方抽样及K-S检验的边坡可靠性分析[J]. 岩土力学, 2011, 32(7): 2153-2156. (MA Jian-quan, LI Guang-jie, XU Pei-hua, et al. Reliability analysis of slope with Latin hypercube sampling and K-S test[J]. Rock and Soil Mechanics, 2011, 32(7): 2153-2156. (in Chinese))
    [16]
    MOLLON G, DIAS D, SOUBRA A H. Probabilistic analysis of pressurized tunnels against face stability using collocation-based stochastic response surface method[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(4): 385-397.
    [17]
    周创兵, 姜清辉. 锦屏一级水电站枢纽区左岸工程边坡变形与稳定性分析研究[R]. 武汉: 武汉大学, 2010. (ZHOU Chuang-bing, JIANG Qing-hui. Research on deformation and stability analysis for the left high slope in the dam site of Jinping I hydropower station[R]. Wuhan: Wuhan University, 2010. (in Chinese))
    [18]
    国家电力公司成都勘测设计研究院. 雅砻江锦屏一级水电站可行性研究报告(3): 工程地质[R]. 成都: 国家电力公司成都勘测设计研究院, 2003. (Chengdu Hydroelectric Investigation and Design Institute, State Power Corporation of China. Feasibility study report on Jinping I Hydropower Station (3): engineering geology[R]. Chengdu: Chengdu Hydroelectric Investigation and Design Institute, State Power Corporation of China, 2003. (in Chinese))
    [19]
    ZOU J Z, WILLIANS D J, XIONG W L. Search for critical slip surfaces based on finite element method[J]. Canadian Geotechnical Journal, 1995, 32(2): 233-246.
    [20]
    GEO-SLOPE International Ltd. Stability modeling with SLOPE/W 2007 Version: an engineering methodology[M]. Calgary: GEO-SLOPE International Ltd., 2010.
    [21]
    GEO-SLOPE International Ltd. Stress-Deformation Modeling with SIGMA/W 2007 Version: an engineering methodology[M]. Calgary: GEO-SLOPE International Ltd., 2010.
  • Cited by

    Periodical cited type(8)

    1. 刘华仁,佟大威,余佳,苏哲. 基于模糊聚类和随机子空间的高土石坝模态参数自动识别. 水力发电学报. 2025(02): 107-115 .
    2. 蔡正银,范开放,朱洵. 基于现场试验的海上筒型基础风电结构动力特性研究. 岩土工程学报. 2025(03): 443-452 . 本站查看
    3. 张翰,张锋,谭尧升,姚孟迪,邓检华. 基于运行时模态分析和代理模型的大坝力学参数反演方法. 粉煤灰综合利用. 2025(01): 163-166 .
    4. 张晓明,谭蓉,贺育明,强继峰,孙森林,张朝军,梁刚. 基于时频域信号特征的输电塔运行模态分析. 电网与清洁能源. 2025(03): 46-52+59 .
    5. 王晓澎,张浩,李欣,肖森,刘璇. 基于随机子空间法的滑动轴承运行模态参数识别. 噪声与振动控制. 2024(01): 126-133 .
    6. 樊圆,卢文胜,虞终军,任祥香. 多次地震作用下高层建筑结构动力特性识别和响应分析. 建筑结构学报. 2023(01): 225-234 .
    7. 翟世龙,刘萍,黄静,艾萨·伊斯马伊力,毛玉剑. 基于大坝地震反应台阵的土石坝模态参数识别. 内陆地震. 2023(04): 353-361 .
    8. 黄嘉思,徐文城,段元锋,章红梅. 基于随机子空间方法的向量式有限元索网模型模态识别. 结构工程师. 2022(06): 1-6 .

    Other cited types(7)

Catalog

    Article views (454) PDF downloads (423) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return