• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Xue-yan, YUAN Da-jun, GUO Xiao-hong. Test and application of in-situ slurry fracturing[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1901-1907.
Citation: LIU Xue-yan, YUAN Da-jun, GUO Xiao-hong. Test and application of in-situ slurry fracturing[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1901-1907.

Test and application of in-situ slurry fracturing

More Information
  • Received Date: January 23, 2013
  • Published Date: October 19, 2013
  • For constructing slurry shield tunnels under rivers or seas, it's a difficult technical problem to maintain the stability of the excavation face while preventing slurry fracturing. There are some laboratory investigations of slurry fracturing. But, due to small sizes and different boundary conditions, the results cannot be directly applied to the projects. In-situ slurry fracturing instrument is developed on the basis of theoretical analysis, and the test procedures of fracturing and the relevant method of confirming fracturing pressure are introduced. The in-situ slurry fracturing test is carried out on the rive-crossing tunnel under construction in Nanjing. The results indicate that: (1) as the fracturing process is a mutation process, the stratum fracturing model can predict fracturing pressure by means of the total stress method, which agrees with actual working condition. The theoretical results show that the fracturing pressure of tunneling model, which is almost equal to the lateral earth pressure, is smaller than that of the in-situ slurry fracturing test. It's efficient to increase fracturing pressure by increasing the slurry viscosity, however, the effect is limited; and (2) the upper limit value of slurry pressure set for preventing slurry fracturing is given according to the results of the in-situ slurry fracturing test. The in-situ slurry fracturing test is performed by shield machine after originating, and it may verify the accuracy of the prediction model to some extent.
  • [1]
    袁大军, 刘学彦. 南京纬三路过江通道工程合理覆土厚度研究[R]. 北京: 北京交通大学, 2013. (YUAN Da-jun, LIU Xue-yan. Research on rational buried depth of shield tunnel at Weisan Road under Yangtze River in Nanjing of China[R]. Beijing: Beijing Jiaotong University; 2013. (in Chinese))
    [2]
    蒋树屏, 刘元雪, 谢 锋, 等. 重庆市朝天门两江隧道越江段盾构法合理覆盖层厚度研究[J]. 岩石力学与工程学报, 2007, 26(6): 1188-1193. (JIANG Shu-ping, LIU Yuan-xue, XIE Feng, et al. Study on reasonable cover thickness for submarine tunnel of Chaotianmen in Chongqing by shield construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6): 1188-1193. (in Chinese))
    [3]
    MORI A, TAMURA M. Hydrofracturing pressure of cohesive soils[J]. Soils and Foundations, 1987, 27(1): 14-22.
    [4]
    MORI A, TAMURA M, FUKUI Y. Fracturing pressure of soil ground by viscous materials[J]. Soils and Foundations, 1990, 30(3): 129-136.
    [5]
    PANAH A K, YANAGISAWA E. Laboratory studies on hydraulic fracturing criteria in soil[J]. Soils and Foundations, 1989, 29(4): 14-22.
    [6]
    BEZUIJEN A, SANDERS MPM, HAMER D D, et al. Laboratory tests on compensation grouting, the influence of grout bleeding[C]// Underground Space-the 4th Dimension of Metropolises. Taylor & Francis, London, Britain, 2007: 395-401.
    [7]
    GAFAR K, SOGA K, BEZUIJEN A, et al. Fracturing of sand in compensation grouting[C]// Geotechnical Aspects of Underground Construction in Soft Ground: Proceedings of the 6th International Symposium (Is-Shanghai), Shanghai, China, 2008. CRC Press Ltd, 2009: 281-286.
    [8]
    MURDOCH L C. Hydraulic fracturing of soil during laboratory experiments, Part 1. Methods and observations[J]. Géotechnique, 1992 43(2): 255-265.
    [9]
    MURDOCH L C. Hydraulic fracturing of soil during laboratory experiments, Part 2. Propagation[J]. Géotechnique, 1993, 43(2): 267-276.
    [10]
    MURDOCH L C. Hydraulic fracturing of soil during laboratory experiments, Part 3. Theoretion[J]. Géotechnique, 1993, 43(2): 277-287.
    [11]
    袁大军, 黄清飞, 李兴高, 等. 盾构掘进黏土地层泥水劈裂伸展现象研究[J]. 岩土工程学报, 2010, 32(5): 712-716. (YUAN Da-jun, HUANG Qing-fei, LI Xing-gao, et al. Hydraulic fracture extending during slurry shield tunneling in cohesive soil[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5): 712-716. (in Chinese))
    [12]
    袁大军, 黄清飞, 小泉淳, 等. 水底盾构掘进泥水喷发现象研究[J]. 岩石力学与工程学报, 2007, 26(11): 2296-2301. (YUAN Da-jun, HUANG Qing-fei, KOIZUMI Atsushi, et al. Study on slurry water gushing during underwater shield[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(11): 2296-2301. (in Chinese))
  • Cited by

    Periodical cited type(8)

    1. 高子涛,马泽瑞,汪书敏,王志亮,尚晓梓,毕云飞,华正宇,缪逢晨. 花岗岩中应力波传播试验与数值模拟分析. 矿业工程研究. 2024(03): 29-35 .
    2. 甘德清,袁涛,薛振林,刘志义,孙海宽. 微观尺度下磁铁矿石动态破碎特性与能耗. 科学技术与工程. 2024(32): 13756-13765 .
    3. 王春,李心茹,胡慢谷,李佳,张红成,张翼飞. 热循环作用后圆环状花岗岩样静动态破裂特征及破坏判据. 岩石力学与工程学报. 2023(S2): 3861-3875 .
    4. 李睿,刘磊,张志华,王远. 基于HJC模型高温后大理岩SHPB实验数值模拟研究. 工程爆破. 2022(01): 37-44 .
    5. 刘雅甜,方士正,何松林,李剑楠,刘朕. 动载作用下铁矿石能量耗散规律及破坏特征试验研究. 金属矿山. 2022(06): 46-54 .
    6. 李艳,程禹翰,翟越,魏盛宇,杨宇冰,赵瑞峰,梁文彪. 高温后花岗岩微观结构演化特性与动态力学性能研究. 岩土力学. 2022(12): 3316-3326 .
    7. 杨敏,杨磊,李玮枢,梅洁,盛祥超,李景龙. 循环升温-水冷作用下花岗岩的力学特征与破坏模式. 科学技术与工程. 2021(32): 13828-13836 .
    8. 黄银钉,张振亚. 花岗岩动态压缩力学特性研究. 地下空间与工程学报. 2019(04): 1133-1137+1179 .

    Other cited types(18)

Catalog

    Article views (290) PDF downloads (443) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return