Citation: | MENG Qing-lin, QU Fu-zheng, LI Shou-ju. Development of soil rotational rheometer and experiment on plastic flow characteristics of conditioned soil in earth pressure balance shield[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1642-1648. |
[1] |
MERRITT A, MAIR R J. Mechanics of tunnelling machine screw conveyor: model tests[J]. Géotechnique, 2006, 56 (9): 605 – 615.
|
[2] |
QUEBAUD S, SIBAI M, HENRY J P. Use of chemical foam for improvements in drilling by earth pressure balanced shields in granular soils[J]. Tunnelling and Underground Space Technology, 1998, 13 (2): 173 – 180.
|
[3] |
WILLIAMSON G E, TRAYLOR M T, HIGUCHI M. Soil conditioning for EPB shield tunneling on the South Bay Ocean Outfall[C]// Proceedings of RETC, 1999: 897 – 925.
|
[4] |
JANCSECZ S, KRAUSE R, LANGMAACK L. Advantages of soil conditioning in shield tunnelling: experiences of LRTS Izmir[C]// ALTEN T, et al, eds. Proceedings of International Congress on Challenges for the 21st Century, Balkema, Rotterdam: 865 – 875.
|
[5] |
BOONE S J, ARTIGIANI E, SHIRLAW J N, et al. Use of ground conditioning agents for Earth Pressure Balance machine tunnelling[C]// AFTES, ed. Proceedings of Congress International de Chambery: 313 – 319.
|
[6] |
VINAI R, OGGERI C, PEILA D. Soil conditioning of sand for EPB applications: a laboratory research[J]. Tunnelling and Underground Space Technology, 2008, 23 (3): 308 – 317.
|
[7] |
魏康林 . 土压平衡式盾构施工中“理想状态土体”的探讨 [J] . 城市轨道交通研究 , 2007(1): 67 – 70. (WEI Kang-lin. On the ideal soil in the earth pressure balanced shield tunnelling[J]. Urban Mass Transit, 2007(1): 67 – 70. (in Chinese))
|
[8] |
YOSHIKAWA T. Soil pressure drop of the screw conveyor for shielded machines[C]// Transactions of the Japan Society for Mechanical Engineers, 1996, Part C 62(595): 1197 – 1203.
|
[9] |
BEZUIJEN A, SCHAMINEE P E L. Model experiments using foam simulation the drilling with an EPB shield[R]. GeoDelft Report No. BF 51010. Delft, GeoDelft, 2000.
|
[10] |
BEZUIJEN A, SCHAMINEE P E L. Simulation of the EPB-shield TBM in model tests with foam as additive[C]// Proceedings of Congress on Modern Tunnelling Science and Technology. Balkema, Kyoto, Rotterdam, 2001: 935 – 940.
|
[11] |
沈寿长 . 泥石流流变特性的试验研究 [J]. 水利学报 , 1998, 9 (9): 7 – 13. (SHEN Shou-chang. Experiment of rheology of debris flow[J]. Journal of Hydraulic Engineering, 1998, 9 (9): 7 – 13. (in Chinese))
|
[12] |
刘宝林 , 孔 珑 . 水煤浆流动特性及其流变模型确定方法综述 [J]. 煤化工 , 1995(4): 49 – 53. (LIU Bao-lin, KONG Long. A summary of flowing properties of coal-water slurry and determination of rheologic model thereof[J]. Coal Chemical Industry, 1995(4): 49 – 53. (in Chinese))
|
[13] |
陈育民 , 刘汉龙 , 邵国建 , 等 . 砂土液化及液化后流动特性试验研究 [J]. 岩土工程学报 , 2009, 31 (9): 1408 – 1413. (CHEN Yu-min, LIU Han-long, SHAO Jian-guo, et al. Laboratory tests on flow characteristics of liquefied and post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2009, 31 (9) : 1408 – 1413. (in Chinese))
|
[14] |
KARMAKAR S, KUSHWAHA R L. Development and laboratory evaluation of a rheometer for soil visco-plastic parameters[J]. Journal of Terramechanics, 2007, 44 (2): 197 – 204.
|
[15] |
SKELLAND A H P. Non-Newtonian flow and heat transfer [D]. New York: John Wiley and Sons Inc, 1967.
|
[16] |
ZISIS T, MITSOULIS E. Visco-plastic flow around a cylinder kept between parallel plates[J]. J Non-Newtonian Fluid Mech, 2002, 105 : 1 – 20.
|
[17] |
BERIS A N, TSAMOPOULOS J A, Armstrong R C, et al. Creeping motion of a sphere through a Bingham plastic[J]. J Fluid Mech, 1985, 158 : 219 – 244.
|
[18] |
CHHABRA R P, RICHARDSON J F. Non-Newtonian flow in the process industries, fundamentals and engineering applications[D]. Oxford: Butterworth Heinemann Publishing Ltd., 1999.
|
[19] |
ASTM D2573 — 72. Standard test method for field vane shear test in cohesive soil[S]. 1972.
|
[1] | Theoretical Analysis of Mud Flow in Large-scale Horizontal Directional Drilling Based on Herschel-Bulkley Fluid[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20241146 |
[2] | ZHU Yinbin, LI Changdong, ZHOU Jiaqing, XIANG Linyu, YU Habin, CHEN Wenqiang. Experimental and numerical studies on non-Darcian flow in single rough-walled rock fracture[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1278-1284. DOI: 10.11779/CJGE20220307 |
[3] | WANG Zhi-hua, HE Jian, GAO Hong-mei, WANG Bing-hui, SHEN Ji-rong. Dynamic pore water pressure model for liquefiable soils based on theory of thixotropic fluid[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2332-2340. DOI: 10.11779/CJGE201812023 |
[4] | ZHOU En-quan, WANG Zhi-hua, LÜ Cong. Shaking table tests on fluid characteristics of saturated Nanjing fine sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 101-106. |
[5] | JIANG Ming-jing, LI Li-qing, SHEN Zhi-fu. Evaluation of double-shearing type kinematic models for granular flows by use of distinct element methods for non-circular particles[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 619-626. |
[6] | WANG Zhi-hua, ZHOU En-quan, CHEN Guo-xing. Fluid characteristics dependent on excess pore water pressure of saturated sand after growth of pore pressure[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3): 528-533. |
[7] | CHEN Yumin, LIU Hanlong, SHAO Guojian, ZHAO Nan. Laboratory tests on flow characteristics of liquefied and post-liquefied sand[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1408-1413. |
[8] | HU Ping, HUANG Maosong, QIAN Jiangu, Lv Xilin. Non-coaxial plasticity constitutive modeling of sands[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 793-798. |
[9] | HU Qizhi, ZHOU Hui, YANG Xueqiang. Effect on plastic strain through the non-smoothness management of corner singularity[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(1): 66-71. |
[10] | QIAN Jiangu, HUANG Maosong, YANG Jun. Effect of non-coaxial plasticity on onset strain localization in soils under 3D stress condition[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4): 510-515. |