• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
LU Xiaobing, WANG Yihua, ZHANG Jianhong, SUN Guoliang, SHI Zhongmin. Centrifuge test on the deformation of bucket foundation under horizontal vibration load[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 789-791.
Citation: LU Xiaobing, WANG Yihua, ZHANG Jianhong, SUN Guoliang, SHI Zhongmin. Centrifuge test on the deformation of bucket foundation under horizontal vibration load[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 789-791.

Centrifuge test on the deformation of bucket foundation under horizontal vibration load

More Information
  • Published Date: July 14, 2005
  • The centrifuge test results show that the sand layer around the bucket foundation softens or liquefies under equivalent dynamic ice-induced load. When the load amplitude is above a critical value, the bucket settles obviously during the dynamic loading. The settlement of the bucket is larger than the sand layer far away from the bucket side wall. There exist cyclical cracks in the sand layer because the differential settlements. The settlement of the bucket increases with the increase of load amplitude and the weight of structure and the decrease of the bucket height (with the same bucket diameter).
  • Related Articles

    [1]ZHANG Junjie, GU Xingwen, REN Guofeng, ZHOU Chuner, WANG Nianxiang. Centrifugal model tests on deformation characteristics of pile-net composite foundation under super-large loads[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 212-216. DOI: 10.11779/CJGE2024S10048
    [2]YUAN Guangzong, LI Jiandong. Centrifugal model tests on influences of loads of a coal storage yard on foundation and pile-based coal shed[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 197-201. DOI: 10.11779/CJGE2024S10029
    [3]LEI Hua-yang, ZHANG Lei, XU Ying-gang, LIANG Jian-wen, BA Zhen-ning. Numerical simulation of settlement of soft soil foundation under fast metro train loads[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 45-48. DOI: 10.11779/CJGE2019S1012
    [4]YAO Yang-ping, WANG Shen, WANG Nai-dong, ZHANG Qian-li. Prediction method for long-term settlements of high-speed railway subgrade under influences of nearby loads[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 625-630. DOI: 10.11779/CJGE201904004
    [5]ZHANG Xing-xing, ZHANG Jian-min, WEN Yan-feng. Practical method to predict settlement of subgrade induced by long-term traffic loads[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2067-2072. DOI: 10.11779/CJGE201511018
    [6]ZHAO Ming-hua, LIU Meng, ZHANG Rui, LONG Jun. Calculation of load sharing ratio and settlement of bidirectional reinforced composite foundation under embankment loads[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2161-2169. DOI: 10.11779/CJGE201412002
    [7]SHENG Zhi-qiang, SHI Yu-cheng, SUN Jun-jie, QIU Ren-dong, LU Yu-xia, LIU Kun, WAN Xiu-hong. Three-dimensional FEM analysis of settlement and deformation of pile-soil system under vertical load using ABAQUS[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 366-371.
    [8]JIANG Jie, HUANG Mao-song, LI Bo, GU Qian-yan. Analysis on settlement of piled raft foundations under repeated loading and verification by centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1811-1817.
    [9]Centrifuge modeling of cyclic loading induced by ice sheet[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(4): 474-477.
    [10]Liu Jinli, Huang Qiang, Li Hua, Gao Wensheng. Deformation Behaviour and Settlement Calculation of Pile Group under VerticaI Load[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(6): 1-13.

Catalog

    SHI Zhongmin

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Article views (1341) PDF downloads (277) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return