Citation: | YANG Lei, MI Xiangyun, LI Zhaofeng, TU Wenfeng, XIE Yunpeng, HU Hao, WANG Kang. Development and permeability reinforcement characteristics of high-strength acrylic salt grouting materials for water-rich ultracataclasite[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(3): 525-534. DOI: 10.11779/CJGE20231290 |
[1] |
高红军, 陈勇. 富水大断面软弱围岩隧道施工方法研究[J]. 公路交通科技(应用技术版), 2020, 16(2): 270-273.
GAO Hongjun, CHEN Yong. Study on construction method of soft surrounding rock tunnel with large section in Fushui[J]. Highway Traffic Science and Technology (Applied Technology Edition) 2020, 16(2): 270-273. (in Chinese)
|
[2] |
魏源泉. 径向注浆对富水软弱围岩隧道二次衬砌的影响研究[D]. 重庆: 重庆交通大学, 2016.
WEI Yuanquan. Study on Influence of Radial Grouting on Secondary Lining of Water-Rich Soft Surrounding Rock Tunnel[D]. Chongqing: Chongqing Jiaotong University, 2016. (in Chinese)
|
[3] |
FENG J, WANG X, ZHOU Y, et al. Study on the supporting time of the secondary lining of the highway tunnel with weak surrounding rock[J]. IOP Conference Series: Earth and Environmental Science, 2021, 643(1): 012042. doi: 10.1088/1755-1315/643/1/012042
|
[4] |
HAO C, FENG G, WANG P. Proportion optimization of grouting materials for roadways with soft surrounding mass[J]. International Journal of Green Energy, 2020, 18(32): 1-16.
|
[5] |
李利平, 成帅, 张延欢, 等. 地下工程安全建设面临的机遇与挑战[J]. 山东科技大学学报(自然科学版), 2020, 39(4): 1-13.
LI Liping, CHENG Shuai, ZHANG Yanhuan, et al. Opportunities and challenges of underground engineering safety construction[J]. Journal of Shandong University of Science and Technology (Natural Science Edition), 2020, 39(4): 1-13. (in Chinese)
|
[6] |
TU W, LI L, SHANG C, et al. Comprehensive risk assessment and engineering application of mine water inrush based on normal cloud model and local variable weight[J]. Energy Sources Part A Recovery Utilization and Environmental Effects, 2019, 46(1): 4298-4313. http://www.xueshufan.com/publication/2990085288
|
[7] |
LI L, TU W, SHI S, et al. Mechanism of water inrush in tunnel construction in karst area[J]. Geomatics, Natural Hazards and Risk, 2016, 7(S1): 1-12.
|
[8] |
LUO Y. Influence of water on mechanical behavior of surrounding rock in hard-rock tunnels: an experimental simulation[J]. Engineering Geology, 2020, 277: 105816. doi: 10.1016/j.enggeo.2020.105816
|
[9] |
WU Y, QIAO W G, LI Y Z, et al. Development and validation of environmentally friendly similar surrounding rock materials and cement slurry for surrounding rock repair and reinforcement[J]. Journal of Cleaner Production, 2022, 347: 131288. doi: 10.1016/j.jclepro.2022.131288
|
[10] |
王凤云. 深埋隧道软弱围岩稳定性分析及其锚固控制研究[J]. 岩石力学与工程, 2020, 39(10): 2160.
WANG Fengyun. Stability analysis and anchoring control of soft surrounding rock in deep tunnel[J]. Journal of Rock Mechanics and Engineering, 2020, 39(10): 2160. (in Chinese)
|
[11] |
MA C. Modeling of grouting penetration in porous medium with influence of grain distribution and grout-water interaction[J]. Processes, 2021, 10(1): 77-84. doi: 10.3390/pr10010077
|
[12] |
SHA F, LIN C, LI Z, et al. Reinforcement simulation of water-rich and broken rock with Portland cement-based grout[J]. Construction and Building Materials, 2019, 221: 292-300. doi: 10.1016/j.conbuildmat.2019.06.094
|
[13] |
ZHANG J P, LIU L M, LI Q H, et al. Development of cement-based self-stress composite grouting material for reinforcing rock mass and engineering application[J]. Construction and Building Materials, 2019, 201: 314-327.
|
[14] |
VASUMITHRAN M, ANAND K B, SATHYAN D. Effects of fillers on the properties of cement grouts[J]. Construction and Building Materials, 2020, 246: 118346.
|
[15] |
ZHANG L, YU R, ZHANG Q, et al. Permeation grouting diffusion mechanism of quick setting grout[J]. Tunnelling and Underground Space Technology, 2022: 124: 104449.
|
[16] |
PARK D S, OH J. Permeation grouting for remediation of dam cores[J]. Engineering Geology, 2017, 233: 63-75.
|
[17] |
LI Z, ZHANG L, CHU Y, et al. Research on influence of water-cement ratio on reinforcement effect for permeation grouting in sand layer[J]. Advances in Materials Science and Engineering, 2020(S1): 1-12.
|
[18] |
EPI G, GORJANC D A. Influence of the web formation of a basic layer of medical textiles on their functionality[J]. Polymers, 2022, 14(11): 2258.
|
[19] |
LI Z, ZHANG J, LI S, et al. Effect of different gypsums on the workability and mechanical properties of red mud-slag based grouting materials[J]. Journal of Cleaner Production, 2019, 245: 118759.
|
[20] |
PAUL S C, ROOYEN A V, VAN Zijl G P A G, et al. Properties of cement-based composites using nanoparticles: a comprehensive review[J]. Construction and Building Materials, 2018, 189: 1019-1034.
|
[21] |
姜瑜. 注浆材料的现状与发展策略[J]. 化工新型材料, 2022, 50(1): 282-286.
JIANG Yu. Current situation and development strategy of grouting materials[J]. New Chemical Materials, 2022, 50(1): 282-286. (in Chinese)
|
[22] |
秦鹏飞. 化学注浆技术及其应用进展[J]. 城市轨道交通研究, 2020, 23(9): 157-161.
QIN Pengfei. Chemical grouting technology and its application progress[J]. Urban Rail Transit Research, 2020, 23(9): 157-161. (in Chinese)
|
[23] |
MA S M, LIU M Z, CAO L X, et al. Preparation of a superabsorbent resistant to saline solution by copolymerization of acrylate with acrylamide[J]. Journal of Functional Polymers, 2003, 16(4): 502-506.
|
[24] |
MEI F H, WANG S F, X. Y. Preparation and performance enhancements of low-heat-releasing polyurethane grouting materials with epoxy resin and water glass[J]. Applied Sciences-Basel, 2022, 12(13): 6397.
|
[25] |
E. A. Vik, L. Experiences from environmental risk management of chemical grouting agents used during construction of the tunnel[J]. Tunnelling and Underground Space Technology, 2000, 15(4): 369-378.
|
[26] |
USHAKOVA T M. All polyethylene compositions based on ultrahigh molecular weight polyethylene: synthesis and properties[J]. Journal of Applied Polymer Science, 2020, 137: 49121.
|
[27] |
ENVELOPE X, SONG Z, DING Y. Predicting compressive strength of cement-based materials containing water-absorbent polymers considering the internal-curing region[J]. Construction and Building Materials, 2022, 360: 129594. http://www.sciencedirect.com/science/article/pii/S0950061822032500
|
[28] |
YU H, ZHANG Y, REN W, et al. Effect of methacrylic acid on the properties of ethylene-vinylene acetate rubber vulcanizates reinforced by magnesium hydroxide[J]. Journal of Applied Polymer Science, 2011, 121: 279-285. http://www.onacademic.com/detail/journal_1000033761715210_7f72.html
|
1. |
萧和,冯健雪,马秀如,张小勇,王林均,黄宝涛. 桩-土相互作用研究进展. 土工基础. 2024(03): 453-458 .
![]() | |
2. |
姜彦彬,何宁,李国维,吴哲辉,汪璋淳. 在机加载条件下桩承式路堤离心模型试验设计. 科学技术与工程. 2024(19): 8201-8207 .
![]() | |
3. |
郭帅杰,周亚东,宋绪国. 三角形布桩桩网复合地基桩土应力计算方法. 应用基础与工程科学学报. 2024(06): 1597-1609 .
![]() | |
4. |
姜彦彬,何斌,王艳芳,陈盛原,何宁. 桩承式路堤桩帽顶面土压测试代表性分析. 公路. 2022(04): 1-7 .
![]() | |
5. |
李威,周春儿,吴加武,董华钢,任红磊. 重载堆场桩网复合地基离心模型试验与数值模拟研究. 岩土工程学报. 2022(S2): 71-75 .
![]() | |
6. |
李立,曹文昭,刘洋,郑俊杰,李波. 桩承式加筋土结构拓宽路基工作特性离心模型试验. 岩石力学与工程学报. 2021(S2): 3357-3366 .
![]() | |
7. |
邱晓光. 复合地基技术在市政道路软弱路基处治中的应用. 江西建材. 2021(12): 175-177 .
![]() |