Citation: | LI Dongfeng, CHENG Wenchieh, WEN Shaojie, HU Wenle. Investigating adsorption properties of Pb(II) of biochar-amended loess using macroscopic and microscopic methods[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 977-986. DOI: 10.11779/CJGE20231263 |
[1] |
张金利, 张林林. 重金属Pb(Ⅱ)在黏土上吸附特性研究[J]. 岩土工程学报, 2012, 34(9): 1584-1589. http://cge.nhri.cn/article/id/14682
ZHANG Jinli, ZHANG Linlin. Adsorption behaviors of heavy metal Pb(Ⅱ) on clay[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1584-1589. (in Chinese) http://cge.nhri.cn/article/id/14682
|
[2] |
国家统计局, 生态环境部. 中国环境统计年鉴-2021[M]. 北京: 中国统计出版社, 2021.
National Bureau of Statistics, Ministry of Ecology and Environment. China Statistical Yearbook on Environment[M]. Beijing: China Statistics Press, 2021. (in Chinese)
|
[3] |
韩智勇, 许模, 刘国, 等. 生活垃圾填埋场地下水污染物识别与质量评价[J]. 中国环境科学, 2015, 35(9): 2843-2852. doi: 10.3969/j.issn.1000-6923.2015.09.042
HAN Zhiyong, XU Mo, LIU Guo, et al. Pollutant identification and quality assessment of groundwater near municipal solid waste landfills in China[J]. China Environmental Science, 2015, 35(9): 2843-2852. (in Chinese) doi: 10.3969/j.issn.1000-6923.2015.09.042
|
[4] |
胡馨然, 杨斌, 韩智勇, 等. 中国正规、非正规生活垃圾填埋场地下水中典型污染指标特性比较分析[J]. 环境科学学报, 2019, 39(9): 3025-3038.
HU Xinran, YANG Bin, HAN Zhiyong, et al. Comparison of the characteristics of typical pollutants in the groundwater between sanitary and non-sanitary landfills in China[J]. Acta Scientiae Circumstantiae, 2019, 39(9): 3025-3038. (in Chinese)
|
[5] |
TRABELSI I, SELLAMI I, DHIFALLAH T, et al. Coupling of anoxic and aerobic biological treatment of landfill leachate[J]. Desalination, 2009, 246(1/2/3): 506-513.
|
[6] |
徐颖, 马艺铭, 张溪, 等. 某生活垃圾填埋场周边地下水饮水途径健康风险评价[J]. 生态环境学报, 2021, 30(3): 558-568.
XU Ying, MA Yiming, ZHANG Xi, et al. Health risk assessment of groundwater drinking pathway around A municipal solid waste landfill[J]. Ecology and Environmental Sciences, 2021, 30(3): 558-568. (in Chinese)
|
[7] |
SRIVASTAVA V C, MALL I D, MISHRA I M. Equilibrium modelling of single and binary adsorption of cadmium and nickel onto bagasse fly ash[J]. Chemical Engineering Journal, 2006, 117(1): 79-91. doi: 10.1016/j.cej.2005.11.021
|
[8] |
GHASSABZADEH H, TORAB-MOSTAEDI M, MOHADDESPOUR A, et al. Characterizations of Co (II) and Pb (II) removal process from aqueous solutions using expanded perlite[J]. Desalination, 2010, 261(1/2): 73-79.
|
[9] |
ZHANG C T, ZHANG Z M, ZHANG L J, et al. Evolution of the functionalities and structures of biochar in pyrolysis of poplar in a wide temperature range[J]. Bioresource Technology, 2020, 304: 123002. doi: 10.1016/j.biortech.2020.123002
|
[10] |
KOMKIENE J, BALTRENAITE E. Biochar as adsorbent for removal of heavy metal ions[Cadmium(II), Copper(II), Lead(II), Zinc(II)] from aqueous phase[J]. International Journal of Environmental Science and Technology, 2016, 13(2): 471-482. doi: 10.1007/s13762-015-0873-3
|
[11] |
GHOLIZADEH M, HU X. Removal of heavy metals from soil with biochar composite: a critical review of the mechanism[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105830. doi: 10.1016/j.jece.2021.105830
|
[12] |
土的工程分类标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.
Standard for Engineering Classification of Soil: GB/T 50123—2019[S]. Beijing: China Planning Press, (in Chinese)
|
[13] |
沈胜强. 土-聚合物改良膨润土竖向屏障对重金属污染物阻隔性能的研究[D]. 南京: 东南大学, 2019.
SHEN Shengqiang. Study on the Barrier Performance of Soil-Polymer Modified Bentonite Vertical Barrier to Heavy Metal Pollutants[D]. Nanjing: Southeast University, 2019. (in Chinese)
|
[14] |
DU Y J, FAN R D, REDDY K R, et al. Impacts of presence of lead contamination in clayey soil-calcium bentonite cutoff wall backfills[J]. Applied Clay Science, 2015, 108: 111-122. doi: 10.1016/j.clay.2015.02.006
|
[15] |
ZHAO B W, XU R Z, MA F F, et al. Effects of biochars derived from chicken manure and rape straw on speciation and phytoavailability of Cd to maize in artificially contaminated loess soil[J]. Journal of Environmental Management, 2016, 184: 569-574. doi: 10.1016/j.jenvman.2016.10.020
|
[16] |
王璐. 生物炭的制备、表征及其对黄土吸附Cd(Ⅱ)Zn(Ⅱ)的影响及机制[D]. 兰州: 兰州交通大学, 2016.
WANG Lu. Preparation and Characterization of Biochar and its Effect on Adsorption of CD (Ⅱ) and Zn (Ⅱ) on Loess and its Mechanism[D]. Lanzhou: Lanzhou Jiatong University, 2016. (in Chinese)
|
[17] |
GILES C H, SMITH D, HUITSON A. A general treatment and classification of the solute adsorption isotherm. I. Theoretical[J]. Journal of Colloid and Interface Science, 1974, 47(3): 755-765. doi: 10.1016/0021-9797(74)90252-5
|
[18] |
XU P P, ZHANG Q Y, QIAN H, et al. Exploring the geochemical mechanism for the saturated permeability change of remolded loess[J]. Engineering Geology, 2021, 284: 105927. doi: 10.1016/j.enggeo.2020.105927
|
[19] |
WANG Y Z, CHEN Y M, XIE H J, et al. Lead adsorption and transport in loess-amended soil-bentonite cut-off wall[J]. Engineering Geology, 2016, 215: 69-80. doi: 10.1016/j.enggeo.2016.11.002
|
[20] |
LI Z Z, TANG X W, CHEN Y M, et al. Sorption behavior and mechanism of Pb(II) on Chinese loess[J]. Journal of Environmental Engineering, 2009, 135(1): 58-67. doi: 10.1061/(ASCE)0733-9372(2009)135:1(58)
|
[21] |
陈云敏, 王誉泽, 谢海建, 等. 黄土–粉土混合土对Pb(Ⅱ)的静平衡和动态吸附特性[J]. 岩土工程学报, 2014, 36(7): 1185-1194.
CHEN Yunmin, WANG Yuze, XIE Haijian, et al. Adsorption characteristics of loess-modified natural silt towards Pb(II): equilibrium and kinetic tests[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1185-1194. (in Chinese)
|
[22] |
MENG J, TAO M M, WANG L L, et al. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure[J]. Science of the Total Environment, 2018, 633: 300-307. doi: 10.1016/j.scitotenv.2018.03.199
|
[23] |
GHOLIZADEH M, HU X. Removal of heavy metals from soil with biochar composite: a critical review of the mechanism[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105830. doi: 10.1016/j.jece.2021.105830
|
[24] |
王翔, 顾凯, 张玉萍, 等. 生物炭对不同土体干缩开裂特性的影响及其机理研究[J]. 岩土工程学报, 2023, 45(4): 876-882.
WANG Xiang, GU Kai, ZHANG Yuping, et al. Effects of biochar on desiccation cracking characteristics of different soils and their mechanism[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 876-882. (in Chinese)
|
[25] |
WANG L, WANG Y J, MA F, et al. Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: a review[J]. Science of the Total Environment, 2019, 668: 1298-1309. doi: 10.1016/j.scitotenv.2019.03.011
|
[26] |
LI Y L, YU H, LIU L N, et al. Application of co-pyrolysis biochar for the adsorption and immobilization of heavy metals in contaminated environmental substrates[J]. Journal of Hazardous Materials, 2021, 420: 126655. doi: 10.1016/j.jhazmat.2021.126655
|
[27] |
AHMAD Z, GAO B, MOSA A, et al. Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass[J]. Journal of Cleaner Production, 2018, 180: 437-449. doi: 10.1016/j.jclepro.2018.01.133
|
[28] |
HE L Z, ZHONG H, LIU G X, et al. Remediation of heavy metal contaminated soils by biochar: mechanisms, potential risks and applications in China[J]. Environmental Pollution, 2019, 252: 846-855. doi: 10.1016/j.envpol.2019.05.151
|
[29] |
吴宏海, 吴大清, 彭金莲. 重金属离子与石英表面反应的实验研究[J]. 地球化学, 1998, 27(6): 523-531. doi: 10.3321/j.issn:0379-1726.1998.06.002
WU Honghai, WU Daqing, PENG Jinlian. Experimental study on surface reactions of heavy metal ions with quartz[J]. Geochimica, 1998, 27(6): 523-531. (in Chinese) doi: 10.3321/j.issn:0379-1726.1998.06.002
|
[30] |
姚倩婷. 磷酸钙材料的电子结构、生物活性及荧光特性研究[D]. 苏州: 苏州大学, 2020.
YAO Qianting. Study on Electronic Structure, Biological Activity and Fluorescence Characteristics of Calcium Phosphate Materials[D]. Suzhou: Soochow University, 2020. (in Chinese)
|
[31] |
陈颢明, 胡亦舒, 李真. 溶磷微生物改性生物炭吸附重金属的机理研究[J]. 中国环境科学, 2021, 41(2): 684-692. doi: 10.3969/j.issn.1000-6923.2021.02.022
CHEN Haoming, HU Yishu, LI Zhen. Mechanism of heavy metal adsorption by phosphorus solubilising microorganism- modified biochar[J]. China Environmental Science, 2021, 41(2): 684-692. (in Chinese) doi: 10.3969/j.issn.1000-6923.2021.02.022
|
[32] |
LI R H, LIANG W, WANG J J, et al. Facilitative capture of As(V), Pb(II) and methylene blue from aqueous solutions with MgO hybrid sponge-like carbonaceous composite derived from sugarcane leafy trash[J]. Journal of Environmental Management, 2018, 212: 77-87.
|
[33] |
马锋锋, 赵保卫, 刁静茹. 小麦秸秆生物炭对水中Cd~(2+)的吸附特性研究[J]. 中国环境科学, 2017, 37(2): 551-559.
MA Fengfeng, ZHAO Baowei, DIAO Jingru. Studies on the adsorption characteristics of wheat straw biochar on Cd~(2+) in water[J]. China Environmental Science, 2017, 37(2): 551-559. (in Chinese)).
|
[34] |
LIU Z G, ZHANG F S. Removal of copper (II) and phenol from aqueous solution using porous carbons derived from hydrothermal chars[J]. Desalination, 2011, 267(1): 101-106. doi: 10.1016/j.desal.2010.09.013
|
[35] |
YIN W Q, DAI D, HOU J H, et al. Hierarchical porous biochar-based functional materials derived from biowaste for Pb(II) removal[J]. Applied Surface Science, 2019, 465: 297-302. doi: 10.1016/j.apsusc.2018.09.010
|
[36] |
THEO KLOPROGGE J. Infrared and Raman spectroscopy of minerals and inorganic materials[M]// Encyclopedia of Spectroscopy and Spectrometry. Amsterdam: Elsevier, 2017: 267-281.
|
[37] |
HE L Z, ZHONG H, LIU G X, et al. Remediation of heavy metal contaminated soils by biochar: mechanisms, potential risks and applications in China[J]. Environmental Pollution, 2019, 252: 846-855. doi: 10.1016/j.envpol.2019.05.151
|
[38] |
DAI Z M, ZHANG X J, TANG C, et al. Potential role of biochars in decreasing soil acidification: A critical review[J]. Science of the Total Environment, 2017, 581: 601-611.
|
[39] |
MA L, XU R K, JIANG J. Adsorption and desorption of Cu(II) and Pb(II) in paddy soils cultivated for various years in the subtropical China[J]. Journal of Environmental Sciences, 2010, 22(5): 689-695. doi: 10.1016/S1001-0742(09)60164-9
|
[40] |
WEN S J, CHENG W C, LI D F, et al. Immobilizing lead using loess and nanoscale zerovalent iron (nZVI)-amended loess: insights from macroscopic and microscopic tests[J]. Environmental Technology & Innovation, 2023, 31: 103228.
|
1. |
夏晶晶,贺姣姣. 基于直剪试验土石混合体路基的稳定性问题研究. 山西建筑. 2025(01): 125-128+172 .
![]() | |
2. |
郜力君,郝捷. 含石率及坡度对土石混合路堑边坡稳定性的影响分析. 交通世界. 2025(Z2): 154-156 .
![]() | |
3. |
邹弈,朱碧堂,吴颖彪,周宇航. 断层破碎带黏性夹泥岩体与基岩接触界面大型直剪试验研究. 华东交通大学学报. 2025(01): 45-51 .
![]() | |
4. |
李利萍,余泓浩,李秋雨,潘一山. 砂岩不同含水特性对超低摩擦效应影响试验研究. 力学学报. 2025(03): 687-700 .
![]() | |
5. |
刘飞禹,王迪,付冬平. 法向循环荷载下土石混合料-格栅界面剪切特性研究. 防灾减灾工程学报. 2025(02): 458-467 .
![]() | |
6. |
黄小芸,邓华锋,李建林,李冠野,叶晨晖,朱文羲. 干湿循环作用下土-岩接触面剪切力学特性劣化规律试验研究. 工程地质学报. 2025(02): 416-425 .
![]() | |
7. |
王家全,吴新彪,董程锋,张涛艺. 基于SmartRock传感技术的含砂道砟直剪试验研究. 岩土力学. 2025(04): 1060-1070 .
![]() | |
8. |
程虎,李重情,穆朝民. 冻结温度对不同粒径冻土石混合体劈裂特性的影响. 煤矿安全. 2024(01): 160-166 .
![]() | |
9. |
代兴先,宋杨,张志彬,齐子怡,刘棋瑞. 土石混合料力学特性和颗粒破碎研究. 河北水利电力学院学报. 2024(01): 1-8 .
![]() | |
10. |
李慎刚,石云方,刘晋宁,蒋琛. 碎石土路基填料压实及渗透特性. 工程科学学报. 2024(05): 918-926 .
![]() | |
11. |
SHI Yunfang,LI Shengang,JIANG Chen,LIU Jinning. Gravel hardness effect on compaction characteristics of gravelly soil. Journal of Mountain Science. 2024(04): 1432-1443 .
![]() |
|
12. |
谢周州,赵炼恒,李亮,黄栋梁,张子健,周靖. 基于振动台试验的不同含石率土-石混合体边坡地震动响应差异性研究. 岩土力学. 2024(08): 2324-2337 .
![]() | |
13. |
王楠楠,高霞,张吉哲,张保勇,吴强. 基于平行黏结模型的含瓦斯水合物煤体宏细观力学性质研究. 煤炭学报. 2024(S1): 314-326 .
![]() | |
14. |
魏东旭,彭雄志,张佳,范帅,冯瑨. 石灰岩碎石土大型直剪试验研究. 勘察科学技术. 2024(04): 1-5+43 .
![]() | |
15. |
李刚,尹小涛. 基于数字化施工的山区公路土石混合弃渣工程尺度参数测定方法研究. 水利与建筑工程学报. 2024(06): 76-82 .
![]() | |
16. |
陈小翔. 碎石土路基填料压实及渗透特性研究. 江西建材. 2024(10): 52-54 .
![]() | |
17. |
杨忠平,李进,刘浩宇,张益铭,刘新荣. 土石混合体-基岩界面剪切力学特性块石尺寸效应. 岩土力学. 2023(04): 965-974 .
![]() | |
18. |
刘建平,周花玉,何天奎,余镜南,张坤,潘玉丛,刘泉声. 含根量对根–土石复合体的抗剪强度影响试验初探——以垂丝海棠为例. 岩石力学与工程学报. 2023(S1): 3618-3628 .
![]() | |
19. |
刘飞禹,孔剑捷,姚嘉敏. 含石量和压实度对格栅-土石混合体界面剪切特性的影响. 岩土工程学报. 2023(05): 903-911 .
![]() | |
20. |
韩志洋,曹志翔,黄开放. 基于离散元模拟的土石混合体剪切与变形特性研究. 中国农村水利水电. 2023(05): 238-244 .
![]() | |
21. |
唐丽云,黄涛,汪卫兵,金龙,孙强,李国玉,罗滔. 冻融循环下土石混合体-混凝土界面剪切特性及孔隙结构演化特征试验研究. 中南大学学报(自然科学版). 2023(05): 1954-1969 .
![]() | |
22. |
张俊云,张乐,高福洲,唐永吉,何卓岭,王鹰. 干湿循环下红层土石混合料强度及变形特性的试验研究. 西南交通大学学报. 2023(06): 1394-1404 .
![]() | |
23. |
程晓颖,乔婷,秦建敏,季顺迎. 复杂形态碎石颗粒的三维离散元模拟及试验验证. 计算机辅助工程. 2023(04): 40-47 .
![]() | |
24. |
YANG Zhong-ping,LI Shi-qi,TIAN Xin,HU Yuan-xin,LI Wan-kun. Cumulative damage effect on debris slopes under frequent microseisms. Journal of Mountain Science. 2022(03): 781-797 .
![]() |
|
25. |
崔熙灿,张凌凯,王建祥. 高堆石坝砂砾石料的细观参数反演及三轴试验模拟. 农业工程学报. 2022(04): 113-122 .
![]() | |
26. |
宋颖能. 朱家涧水库大坝土石方及渗控工程实施探讨. 内蒙古煤炭经济. 2022(08): 160-162 .
![]() | |
27. |
覃国强. 不同含石率及坡度条件下土石混合体路堑高边坡失稳机制分析. 福建交通科技. 2022(06): 21-25 .
![]() |