Citation: | LI Baojian, FU Sai, DUAN Bing, SHI Zhouhuan, PAN Kun. Experimental and mechanism study on solidification strength of marine soft clay[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(S1): 176-180. DOI: 10.11779/CJGE2025S10030 |
[1] |
郑刚, 龚晓南, 谢永利, 等. 地基处理技术发展综述[J]. 土木工程学报, 2012, 45(2): 127-146.
ZHENG Gang, GONG Xiaonan, XIE Yongli, et al. State-of-the-art techniques for ground improvement in China[J]. China Civil Engineering Journal, 2012, 45(2): 127-146. (in Chinese)
|
[2] |
RASUL J M, BURROW M P N, GHATAORA G S. Consideration of the deterioration of stabilised subgrade soils in analytical road pavement design[J]. Transportation Geotechnics, 2016, 9: 96-109. doi: 10.1016/j.trgeo.2016.08.002
|
[3] |
田威, 云伟, 贺文昊, 等. 矿渣基地聚物固化黄土抗压强度及固化机制研究[J]. 土木工程学报, 1-13.
TIAN Wei, YUN He, HE Wen-hao, et al. Study on compressive strength and curing mechanism of slag based geopolymer solidified loess[J]. China Civil Engineering Journal, 1-13. (in Chinese)
|
[4] |
ZHANG M, GUO H, EL-KORCHI T, et al. Experimental feasibility study of geopolymer as the next-generation soil stabilizer[J]. Construction and Building Materials, 2013, 47: 1468-1478. doi: 10.1016/j.conbuildmat.2013.06.017
|
[5] |
邓永锋, 吴子龙, 刘松玉, 等. 地聚合物对水泥固化土强度的影响及其机理分析[J]. 岩土工程学报, 2016, 38(3): 446-453. doi: 10.11779/CJGE201603007
DENG Yongfeng, WU Zilong, LIU Songyu, et al. Influence of geopolymer on strength of cement-stabilized soils and its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 446-453. (in Chinese) doi: 10.11779/CJGE201603007
|
[6] |
王子帅, 王东星. 工业废渣-水泥协同固化土抗硫酸盐侵蚀性能[J]. 岩土工程学报, 2022, 44(11): 2035-2042. doi: 10.11779/CJGE202211009
WANG Zishuai, WANG Dongxing. Performances of industrial residue-cement solidified soils in resisting sulfate erosion[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2035-2042. (in Chinese) doi: 10.11779/CJGE202211009
|
[7] |
吴俊, 征西遥, 杨爱武, 等. 矿渣-粉煤灰基地质聚合物固化淤泥质黏土的抗压强度试验研究[J]. 岩土力学, 2021, 42(3): 647-655.
WU Jun, ZHENG Xiyao, YANG Aiwu, et al. Experimental study on the compressive strength of muddy clay solidified by the one-part slag-fly ash based geopolymer[J]. Rock and Soil Mechanics, 2021, 42(3): 647-655. (in Chinese)
|
[8] |
孙秀丽, 王淑婷, 姚君, 等. 碱激发粉煤灰和矿粉固化淤泥的胶结体孔隙分布特征[J]. 重庆大学学报, 2018, 41(6): 58-65.
SUN Xiuli, WANG Shuting, YAO Jun, et al. Pore distribution characteristics of dredged sludge cementation body solidified with fly ash and mineral power under alkali stimulated conditions[J]. Journal of Chongqing University, 2018, 41(6): 58-65. (in Chinese)
|
[9] |
马骁. 基于无机聚合物水泥的新型高性能轻骨料混凝土的制备与性能研究[D]. 长沙: 中南大学, 2012.
MA Xiao. Research on Preparation and Performance of New Type High Performance Lightweight Aggregate Concrete Based on Inorganic Polymer Cement[D]. Changsha: Central South University, 2012. (in Chinese)
|
[10] |
刘景锦, 罗昊鹏, 雷华阳, 等. 碱激发地质聚合物固化软土的研究进展[J]. 硅酸盐通报, 2023, 42(2): 565-574.
LIU Jingjin, LUO Haopeng, LEI Huayang, et al. Research progress on application of alkali-activated geopolymers to stabilize soft soil[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(2): 565-574. (in Chinese)
|
[11] |
王林浩. 煤系偏高岭土复合水泥土工程特性及相关机理研究[D]. 太原: 太原理工大学, 2018.
WANG Linhao. Engineering Properties and Mechanism of Composite Cemented Soils with Coal-Bearing Metakaolin[D]. Taiyuan: Taiyuan University of Technology, 2018. (in Chinese)
|
[12] |
DU Y J, WEI M L, JIN F, et al. Stress-strain relation and strength characteristics of cement treated zinc-contaminated clay[J]. Engineering Geology, 2013, 167: 20-26. doi: 10.1016/j.enggeo.2013.10.005
|
1. |
张健,陈澄昊,梅世昂. 应力和渗流耦合作用下砂砾料渗透特性试验研究. 小水电. 2024(02): 26-31 .
![]() |