LAN Jingyan, LU Binrong, XIAN Ganling, WANG Songxuan. Equivalent linearization simulation of seismic effects in soft soil sites with piles[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(S1): 154-158. DOI: 10.11779/CJGE2025S10025
    Citation: LAN Jingyan, LU Binrong, XIAN Ganling, WANG Songxuan. Equivalent linearization simulation of seismic effects in soft soil sites with piles[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(S1): 154-158. DOI: 10.11779/CJGE2025S10025

    Equivalent linearization simulation of seismic effects in soft soil sites with piles

    More Information
    • Received Date: April 05, 2025
    • Available Online: July 09, 2025
    • To explore the influences of pile-soil system on site seismic response, the secondary development is carried out based on the finite element software ABAQUS, and an equivalent linearization model is embedded to characterize the dynamic nonlinear constitutive relationship of soils. A three-dimensional finite element seismic response analysis model with pile foundation is established. By analyzing the seismic response of the pile-soil interaction system, the numerical results are compared with the centrifugal model test ones to verify the feasibility of the numerical model. The results show that: (1) Under earthquake action, the bending moment value of the pile body is the highest at the middle and lower positions, and a "waist cinching" phenomenon appears near the surface. (2) As the burial depth of the soil layer decreases, the peak displacement gradually increases, and the maximum value appears at the surface. (3) The peak acceleration amplification factor of soils exhibits a trend of first decreasing and then increasing with the decrease of the burial depth. By calculating the cumulative absolute velocity amplification factor of different soil layers, it is shown that the cumulative sustained effects of seismic motion are the greatest at the surface.
    • [1]
      LIYANAPATHIRANA D S, POULOS H G. Seismic lateral response of piles in liquefying soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(12): 1466-1479. doi: 10.1061/(ASCE)1090-0241(2005)131:12(1466)
      [2]
      于磊, 景立平, 汪刚, 等. 单桩-土-结构振动台试验模型数值计算分析[J]. 世界地震工程, 2020, 36(3): 151-160.

      YU Lei, JING Liping, WANG Gang, et al. Numerical analysis of single pile-soil-structure shaking table test model[J]. World Earthquake Engineering, 2020, 36(3): 151-160. (in Chinese)
      [3]
      鲁传安. 桥梁群桩基础的抗震性能研究[D]. 上海: 同济大学, 2008.

      LU Chuanan. Study on Seismic Performance of Bridge Group Pile Foundation[D]. Shanghai: Tongji University, 2008. (in Chinese)
      [4]
      王睿, 张建民, 张嘎. 侧向流动地基单桩基础离心机振动台试验研究[J]. 工程力学, 2012, 29(10): 98-105.

      WANG Rui, ZHANG Jianmin, ZHANG Ga. Centrifuge shaking table test on single pile in lateral spreading soil[J]. Engineering Mechanics, 2012, 29(10): 98-105. (in Chinese)
      [5]
      赵晓光. 地震作用下建筑高低承台群桩基础响应规律试验研究[D]. 北京: 中国建筑科学研究院, 2020.

      ZHAO Xiaoguang. Experimental Study on Response Law of Pile Foundation of High and low Pile Caps under Earthquake[D]. Beijing: China Academy of Building Research, 2020. (in Chinese)
      [6]
      冯君, 张俊云, 朱明, 等. 软土地层高承台桥梁群桩基础横向承载特性研究[J]. 岩土力学, 2016, 37(增刊2): 94-104.

      FENG Jun, ZHANG Junyun, ZHU Ming, et al. Study on lateral bearing characteristics of bridge group pile foundation with high pile caps on soft soil[J]. Rock and Soil Mechanics, 2016, 37(S2): 94-104. (in Chinese)
      [7]
      GOH S H, ZHANG L. Estimation of peak acceleration and bending moment for pile-raft systems embedded in soft clay subjected to far-field seismic excitation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(11): 04017082. doi: 10.1061/(ASCE)GT.1943-5606.0001779
      [8]
      ZHANG L, GOH S H, LIU H B. Seismic response of pile-raft-clay system subjected to a long-duration earthquake: centrifuge test and finite element analysis[J]. Soil Dynamics and Earthquake Engineering, 2017, 92: 488-502. doi: 10.1016/j.soildyn.2016.10.018
      [9]
      LIANG F Y, LIANG X, ZHANG H, et al. Seismic response from centrifuge model tests of a scoured bridge with a pile-group foundation[J]. Journal of Bridge Engineering, 2020, 25(8): 04020054. doi: 10.1061/(ASCE)BE.1943-5592.0001594
      [10]
      张亚旭, 王修信, 庄海洋. 土-桩-框架结构非线性相互作用的精细数值模型及其验证[J]. 防灾减灾工程学报, 2010, 30(5): 558-566.

      ZHANG Yaxu, WANG Xiuxin, ZHUANG Haiyang. Fine numerical modeling of nonlinear soil-pile-frame structure interaction system and its verification[J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(5): 558-566. (in Chinese)
      [11]
      李雨润, 孙伟民, 梁艳. 基于OpenSees PL液化土中桩基横向动力响应数值模拟研究[J]. 建筑结构, 2015, 45(8): 85-90.

      LI Yurun, SUN Weimin, LIANG Yan. Numerical simulation study on lateral dynamic response of pile foundation in liquefied soil based on OpenSees PL[J]. Building Structure, 2015, 45(8): 85-90. (in Chinese)
      [12]
      冯忠居, 孟莹莹, 张聪, 等. 强震作用下液化场地群桩动力响应及p-y曲线[J]. 岩土力学, 2022, 43(5): 1289-1298.

      FENG Zhongju, MENG Yingying, ZHANG Cong, et al. Dynamic response and p-y curve of pile groups in liquefaction site under strong earthquake[J]. Rock and Soil Mechanics, 2022, 43(5): 1289-1298. (in Chinese)
      [13]
      咸甘玲, 兰景岩, 潘旦光, 等. 桩顶荷载对软土地基-群桩基础动力相互作用的影响与机理分析[J]. 岩土工程学报, 2023, 45(增刊2): 67-72. doi: 10.11779/CJGE2023S20003

      XIAN Ganling, LAN Jingyan, PAN Dangang, et al. Influences and mechanisms of loads at pile top on dynamic interaction between soft-foundation with pile groups[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 67-72. (in Chinese) doi: 10.11779/CJGE2023S20003
      [14]
      国家质量监督检验检疫总局, 中国国家标准化管理委员会. 工程场地地震安全性评价: GB 17741—2005[S]. 北京: 中国标准出版社, 2006.

      General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Evaluation of seismic safety for engineering sites: GB 17741—2005[S]. Beijing: Standards Press of China, 2006. (in Chinese)
      [15]
      国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中国地震动参数区划图: GB 18306—2015[S]. 北京: 中国标准出版社, 2016.

      General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Seismic ground motion parameters zonation map of China: GB 18306—2015[S]. Beijing: Standards Press of China, 2016. (in Chinese)
      [16]
      路沙沙, 赵东旭, 白举科, 等. 隧道-土-桥桩相互作用体系振动台试验与数值模拟研究[J]. 振动工程学报, 2024, 37(1): 168-181.

      LU Shasha, ZHAO Dongxu, BAI Juke, et al. Shaking table test and numerical simulation of tunnel-soil-bridge pile interaction system[J]. Journal of Vibration Engineering, 2024, 37(1): 168-181. (in Chinese)
      [17]
      任鸿燚. 基于动力离心模型试验土体动力学参数反演研究[D]. 桂林: 桂林理工大学, 2024.

      REN Hongyi. Inversion Research on soil Dynamic Parameters Based on Dynamic Centrifugal Model Test [D]. Guilin: Guilin University of Technology, 2024. (in Chinese)
      [18]
      费康, 刘汉龙. ABAQUS的二次开发及在土石坝静、动力分析中的应用[J]. 岩土力学, 2010, 31(3): 881-890.

      FEI Kang, LIU Hanlong. Secondary development of ABAQUS and its application to static and dynamic analyses of earth-rockfill dam[J]. Rock and Soil Mechanics, 2010, 31(3): 881-890. (in Chinese)
      [19]
      兰景岩, 宋锡俊, 王婷. 上覆海水层对自由场基本周期影响的离心模型试验研究[J]. 岩土工程学报, 2021, 43(4): 768-775. doi: 10.11779/CJGE202104020

      LAN Jingyan, SONG Xijun, WANG Ting. Centrifugal model tests on influences of overlying sea layer on basic period of free field [J]. Chinese Journal of Geotechnical Engineering, 2021, 43(4): 768-775. (in Chinese) doi: 10.11779/CJGE202104020
      [20]
      张文斌, 胡进军, 胡磊. 日本海沟俯冲带海底地震动累积能量参数的条件预测模型[J]. 地球物理学报, 2024, 67(7): 2729-2743.

      ZHANG Wenbin, HU Jinjun, HU Lei. Condition prediction model of cumulative energy of seafloor ground motions in the Japan trench subduction zone[J]. China Journal of Geophysics, 2024, 67(7): 2729-2743. (in Chinese)
    • Cited by

      Periodical cited type(10)

      1. 凌建明,张玉,钱劲松,吴振吉,郑纯宇. 冻融条件下路基温度场和湿度场分布式感知试验. 同济大学学报(自然科学版). 2024(04): 582-591 .
      2. 寇玉冬,张利伟. 城市浅层土体水热耦合数值模拟分析. 工程与建设. 2024(06): 1249-1252+1257 .
      3. 高磊,曹阳,赵子鑫,叶永锋,张纶钊. 海岛环境条件下超长灌注桩温度光纤监测研究. 防灾减灾工程学报. 2023(04): 674-681 .
      4. 焦卫国,林长松,庹斌,贺明卫,刘振男,张玥. 半湿润地区毛细阻滞覆盖层长期防渗性能评价与渗漏气象机制分析. 土木工程学报. 2023(10): 118-126 .
      5. 赵志鹏,景明,黄亚军,吕志强. 基于模型试验的边坡二、三层毛细屏障导流长度分析. 矿产勘查. 2023(09): 1722-1730 .
      6. 焦卫国,庹斌,张松,贺明卫,林长松,刘振男. 西北非湿润区毛细阻滞覆盖层防渗性能验证与长期服役高危易渗气象段分析. 岩土力学. 2023(S1): 539-547 .
      7. 马朝阳,任杰,南胜豪,徐松. 土石堤坝渗漏病险试验装置的研制及初步应用. 岩土工程学报. 2023(11): 2268-2277 . 本站查看
      8. 朱武,张勤,朱建军,黄观文,王彦平,朱鸿鹄,胡伟,胡俊. 特大滑坡实时监测预警与技术装备研发. 岩土工程学报. 2022(07): 1341-1350 . 本站查看
      9. 刘喜凤,朱鸿鹄,王家琛,李杰,王静,曹鼎峰,施斌. 非饱和土水分迁移感测的主动加热光纤光栅法试验研究. 岩土工程学报. 2022(08): 1443-1452 . 本站查看
      10. 刘喜凤,朱鸿鹄,王家琛,吴冰,李杰,曹鼎峰,施斌. 基于神经网络的改进型土壤水分光纤感测技术研究. 岩土工程学报. 2022(09): 1721-1729+11 . 本站查看

      Other cited types(2)

    Catalog

      Article views PDF downloads Cited by(12)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return