Citation: | SI Chuanqi, WANG Chen, LIANG Jiaxin, HUA Jian, LIANG Fayun. Application prospects and challenges of intelligent technology in urban coastal soft soil engineering[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 216-220. DOI: 10.11779/CJGE2024S20045 |
[1] |
丁智, 张霄, 梁发云, 等. 软土基坑开挖对邻近既有隧道影响研究及展望[J]. 中国公路学报, 2021, 34(3): 50-70.
DING Zhi, ZHANG Xiao, LIANG Fayun, et al. Research and prospects regarding the effect of foundation pit excavation on an adjacent existing tunnel in soft soil[J]. China Journal of Highway and Transport, 2021, 34(3): 50-70. (in Chinese)
|
[2] |
陈湘生, 洪成雨, 苏栋. 智能岩土工程初探[J]. 岩土工程学报, 2022, 44(12): 2151-2159. doi: 10.11779/CJGE202212001
CHEN Xiangsheng, HONG Chengyu, SU Dong. Intelligent geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2151-2159. (in Chinese) doi: 10.11779/CJGE202212001
|
[3] |
黎剑华, 张鸿, 刘优平, 等. 光纤Bragg光栅在公路软基沉降监测中的应用[J]. 中南大学学报(自然科学版), 2011, 42(5): 1442-1446.
LI Jianhua, ZHANG Hong, LIU Youping, et al. Fiber Bragg grating monitoring technology applied in soft ground settlement of highway[J]. Journal of Central South University (Science and Technology), 2011, 42(5): 1442-1446. (in Chinese)
|
[4] |
朱海琴, 胡玉婷, 毛学军, 等. 基于FBG传感技术的软基全断面沉降传感器研发[J]. 南昌工程学院学报, 2016, 35(4): 79-84.
ZHU Haiqin, HU Yuting, MAO Xuejun, et al. Development of whole cross section settlement sensor for soft soil foundation based on FBG sensing technology[J]. Journal of Nanchang Institute of Technology, 2016, 35(4): 79-84. (in Chinese)
|
[5] |
侯公羽, 李子祥, 胡涛, 等. 基于分布式光纤应变传感技术的隧道沉降监测研究[J]. 岩土力学, 2020, 41(9): 3148-3158.
HOU Gongyu, LI Zixiang, HU Tao, et al. Study of tunnel settlement monitoring based on distributed optic fiber strain sensing technology[J]. Rock and Soil Mechanics, 2020, 41(9): 3148-3158. (in Chinese)
|
[6] |
朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10): 1717-1733.
ZHU Jianjun, LI Zhiwei, HU Jun. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1717-1733. (in Chinese)
|
[7] |
WU Y, LIU C, ZHANG Q, et al. Bibliometric analysis of interferometric synthetic aperture radar (InSAR) application in land subsidence from 2000 to 2021[J]. Journal of Sensors, 2022, 2022: 1-15.
|
[8] |
WU S, ZHANG B, DING X, et al. Radar interferometry for urban infrastructure stability monitoring: from techniques to applications[J]. Sustainability, 2023, 15(19): 14654. doi: 10.3390/su151914654
|
[9] |
邢学敏, 杨东, 张锐, 等. 基于雷达遥感对地观测技术的软土地区公路沉降监测方法[J]. 岩土工程学报, 2023, 45(10): 2172-2179. doi: 10.11779/CJGE20220813
XING Xuemin, YANG Dong, ZHANG Rui, et al. Monitoring method for subsidence of highways in soft soil areas based on radar remote sensing earth observation technique[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2172-2179. (in Chinese) doi: 10.11779/CJGE20220813
|
[10] |
赵超英, 刘晓杰, 张勤, 等. 甘肃黑方台黄土滑坡InSAR识别、监测与失稳模式研究[J]. 武汉大学学报(信息科学版), 2019, 44(7): 996-1007.
ZHAO Chaoying, LIU Xiaojie, ZHANG Qin, et al. Study on InSAR recognition, monitoring and instability model of Heifangtai loess landslide in Gansu Province[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 996-1007. (in Chinese)
|
[11] |
孙懋珩, 王欣. 基于双目视觉的基坑位移监测方案[J]. 计算机工程与设计, 2015, 36(1): 273-276.
SUN Maoheng, WANG Xin. Excavation displacement monitoring scheme based on binocular vision[J]. Computer Engineering and Design, 2015, 36(1): 273-276. (in Chinese)
|
[12] |
李丽萍, 郑晅. 基于双目立体视觉的隧道围岩形变监测系统[J]. 物联网技术, 2021, 11(3): 22-23.
LI Liping, ZHENG Xuan. Tunnel surrounding rock deformation monitoring system based on binocular stereo vision[J]. Internet of Things Technologies, 2021, 11(3): 22-23. (in Chinese)
|
[13] |
HE L, TAN J, HU Q, et al. Non-contact measurement of the surface displacement of a slope based on a smart binocular vision system[J]. Sensors (Basel), 2018, 18(9): E2890. doi: 10.3390/s18092890
|
[14] |
HU Q, FENG Z, HE L, et al. Accuracy improvement of binocular vision measurement system for slope deformation monitoring[J]. Sensors, 2020, 20(7): 1994. doi: 10.3390/s20071994
|
[15] |
郑健龙, 周驰晴, 张军辉. 双层地基一维固结特性研究综述[J]. 长沙理工大学学报(自然科学版), 2012, 9(1): 1-11.
ZHENG Jianlong, ZHOU Chiqing, ZHANG Junhui. Summary of 1-D consolidation characteristics of double-layered ground[J]. Journal of Changsha University of Science & Technology (Natural Science), 2012, 9(1): 1-11. (in Chinese)
|
[16] |
张冲, 刘钢, 赵明志, 等. 成宜高速某浅层软土上路堤填筑的稳定性分析[J]. 中外公路, 2021, 41(2): 19-25.
ZHANG Chong, LIU Gang, ZHAO Mingzhi, et al. Stability analysis of embankment filling on a shallow soft soil of Chengyi Expressway[J]. Journal of China & Foreign Highway, 2021, 41(2): 19-25. (in Chinese)
|
[17] |
ABIODUN O I, JANTAN A, OMOLARA A E, et al. Comprehensive review of artificial neural network applications to pattern recognition[J]. IEEE ACCESS, 2019, 7: 158820-158846. doi: 10.1109/ACCESS.2019.2945545
|
[18] |
ZHANG Q, ZHU Y, MA R, et al. Prediction method of TBM tunneling parameters based on PSO-BI-LSTM model[J]. Frontiers in Earth Science, 2022, 10: 854807. doi: 10.3389/feart.2022.854807
|
[19] |
潘秋景, 吴洪涛, 张子龙, 等. 基于多域物理信息神经网络的复合地层隧道掘进地表沉降预测[J]. 岩土力学, 2024, 45(2): 539-551.
PAN Qiujing, WU Hongtao, ZHANG Zilong, et al. Prediction of tunneling-induced ground surface settlement within composite strata using multi-physics- informed neural network[J]. Rock and Soil Mechanics, 2024, 45(2): 539-551. (in Chinese)
|
[20] |
周中, 张俊杰, 丁昊晖, 等. 基于GA-Bi-LSTM的盾构隧道下穿既有隧道沉降预测模型[J]. 岩石力学与工程学报, 2023, 42(1): 224-234.
ZHOU Zhong, ZHANG Junjie, DING Haohui, et al. Settlement prediction model of shield tunnel under-crossing existing tunnel based on GA-Bi-LSTM[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(1): 224-234. (in Chinese)
|
[21] |
林东, 郑俊杰, 薛鹏鹏, 等. 基于贝叶斯方法的软土深基坑不确定性位移反演分析[J]. 土木与环境工程学报(中英文), 2024, 46(3): 52-60.
LIN Dong, ZHENG Junjie, XUE Pengpeng, et al. Probabilistic method for displacement back analysis of deep excavations in soft soil based on Bayesian method[J]. Journal of Civil and Environmental Engineering, 2024, 46(3): 52-60. (in Chinese)
|
[22] |
王长虹, 吴昭欣, 王昆, 等. CPTU数据校准上海深层软土参数的随机力学-贝叶斯方法[J]. 岩土工程学报, 2023, 45(1): 75-84. doi: 10.11779/CJGE20211494
WANG Changhong, WU Zhaoxin, WANG Kun, et al. Stochastic mechanics-based Bayesian method for calibrating geotechnical parameters of Shanghai deep soft clay using CPTU data[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 75-84. (in Chinese) doi: 10.11779/CJGE20211494
|
[23] |
VARDAKOS S, GUTIERREZ M, XIA C C. Parameter identification in numerical modeling of tunneling using the differential evolution genetic algorithm (DEGA)[J]. Tunnelling and Underground Space Technology, 2012, 28: 109-123.
|
[24] |
戴斌, 胡耘, 王惠生. 上海地区相邻基坑同步开挖影响分析与实践[J]. 岩土工程学报, 2021, 43(增刊2): 129-132. doi: 10.11779/CJGE2021S2031
DAI Bin, HU Yun, WANG Huisheng. Analysis and practice of influence of synchronous excavation of adjacent foundation pits in Shanghai Area[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 129-132. (in Chinese) doi: 10.11779/CJGE2021S2031
|
[25] |
唐洪祥, 崔家铭, 张雪, 等. 岩土体大变形分析的Cosserat-粒子有限元法[J]. 岩土工程学报, 2023, 45(3): 495-502. doi: 10.11779/CJGE20211244
TANG Hongxiang, CUI Jiaming, ZHANG Xue, et al. Cosserat-particle finite element method for large deformation analysis of rock and soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 495-502. (in Chinese) doi: 10.11779/CJGE20211244
|
[26] |
王辉, 陈卫忠, 陈培帅, 等. 浅埋大跨小净距隧道断面形态及合理间距的优化研究[J]. 岩土力学, 2011, 32(增刊2): 641-646.
WANG Hui, CHEN Weizhong, CHEN Peishuai, et al. Study of section morphology and reasonable distance optimization of large-span twin tunnels with small clear spacing in shallow rock mass[J]. Rock and Soil Mechanics, 2011, 32(S2): 641-646. (in Chinese)
|
[27] |
TAO F, MA X, HU T, et al. Research on digital twin standard system[J]. Computer Intergraded Manufacturing Systems, 2019, 25(10), 2405–2418.
|
[28] |
GRIEVES M, VICKERS J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems[M]. Cham: Springer International Publishing, 2017.
|
[29] |
CHENG X, WANG C, LIANG F Y, et al. A preliminary investigation on enabling digital twin technology for operations and maintenance of urban underground infrastructure[J]. AI in Civil Engineering, 2024, 3(1): 4.
|
[30] |
陈健, 盛谦, 陈国良, 等. 岩土工程数字孪生技术研究进展[J]. 华中科技大学学报(自然科学版), 2022, 50(8): 79-88.
CHEN Jian, SHENG Qian, CHEN Guoliang, et al. Research progress in digital twin technology for geotechnical engineering[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(8): 79-88. (in Chinese)
|
[31] |
何满潮. 滑坡地质灾害远程监测预报系统及其工程应用[J]. 岩石力学与工程学报, 2009, 28(6): 1081-1090.
HE Manchao. Real-time remote monitoring and forecasting system for geological disasters of landslides and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6): 1081-1090. (in Chinese)
|
[32] |
张斌, 冯其波, 杨婧, 等. 路基沉降远程自动监测系统的研发[J]. 中国铁道科学, 2012, 33(1): 139-144.
ZHANG Bin, FENG Qibo, YANG Jing, et al. Development of remote automatic monitoring system for subgrade settlement[J]. China Railway Science, 2012, 33(1): 139-144. (in Chinese)
|
[33] |
邬凯, 盛谦, 张勇慧, 等. 山区公路路基边坡地质灾害远程监测预报系统开发及应用[J]. 岩土力学, 2010, 31(11): 3683-3687.
WU Kai, SHENG Qian, ZHANG Yonghui, et al. Development of real-time remote monitoring and forecasting system for geological disasters at subgrade slopes of mountainous highways and its application[J]. Rock and Soil Mechanics, 2010, 31(11): 3683-3687. (in Chinese)
|
1. |
张伟丽,李明依,李俊,钱程,陈宗武. 基于MICP技术的固化黏土抗侵蚀性能研究. 安全与环境工程. 2025(01): 201-210+232 .
![]() | |
2. |
高瑜,邢家伟,王晓荣,韩红伟,樊促遥. 核磁共振作用下微生物矿化风沙土材料的微观孔隙. 科学技术与工程. 2025(05): 2066-2073 .
![]() | |
3. |
王东星,许凤丽,泮晓华,商武锋,吴章平,郭克诚. GGBS-MICP协同固化淤泥质砂土工程特性研究. 岩石力学与工程学报. 2025(05): 1349-1362 .
![]() | |
4. |
朱文羲,邓华锋,李建林,肖瑶,熊雨,程雷. 木质素磺酸钙增强花岗岩残积土微生物固化效果研究. 土木工程学报. 2024(03): 123-132 .
![]() | |
5. |
徐志平,贾卓龙,晏长根,王逸凡. 聚丙烯纤维加筋黄土边坡防护原位测试及改进策略. 人民黄河. 2024(04): 111-116 .
![]() | |
6. |
耿会岭,赵卫全,赵永刚,杨晓东,于凡. 生物诱导碳酸钙沉淀在改善土壤侵蚀中的应用. 水利水电技术(中英文). 2024(03): 11-23 .
![]() | |
7. |
蒋钊,彭劼,许鹏旭,卫仁杰,李亮亮. 微生物结合碳纤维加固钙质砂的高强度试验研究. 土木与环境工程学报(中英文). 2024(05): 64-73 .
![]() | |
8. |
付贵永,肖杨,史金权,周航,刘汉龙. 干湿循环下EICP联合黄原胶加固钙质粉土劣化特性试验研究. 岩土工程学报. 2024(11): 2341-2351 .
![]() | |
9. |
郑宏扬,王瑞,刘宇佳,唐朝生. 基于生物碳化活性氧化镁技术抑制土体干缩开裂的试验研究. 高校地质学报. 2024(06): 705-713 .
![]() | |
10. |
袁童,雷学文,艾东,安然,陈昶,陈欣. 椰壳纤维-MICP复合改良膨胀土强度特性. 水利与建筑工程学报. 2023(03): 105-111 .
![]() | |
11. |
赵卫全,张银峰,李娜,耿会岭,严俊. 微生物改良膨胀土的胀缩性及耐水性试验研究. 中国水利水电科学研究院学报(中英文). 2023(04): 350-359 .
![]() | |
12. |
杜掀,郑涛,卢超波,杨庭伟,姜洪亮. 不同类型纤维对MICP处理钙质砂物理力学性能的影响. 西部交通科技. 2023(01): 60-63 .
![]() | |
13. |
胡其志,霍伟严,马强,陶高梁. MICP联合纤维加筋黄土的力学性能及水稳性研究. 人民长江. 2023(08): 227-232+248 .
![]() | |
14. |
张婧,杨四方,张宏,曹函,陆爱灵,唐卫平,廖梦飞. 碳中和背景下MICP技术深化与应用. 现代化工. 2023(11): 75-79+84 .
![]() | |
15. |
张建伟,赵聪聪,尹悦,石磊,边汉亮,韩智光. 紫外诱变产脲酶菌株加固粉土的试验研究. 岩土工程学报. 2023(12): 2500-2509 .
![]() | |
16. |
陈欣,安然,汪亦显,陈昶. 胶结液浓度对MICP固化残积土力学性能影响及机理研究. 水利与建筑工程学报. 2023(06): 100-106+149 .
![]() | |
17. |
贺桂成,唐孟媛,李咏梅,李春光,张志军,伍玲玲. 改性黄麻纤维联合微生物胶结铀尾砂的抗渗性能试验研究. 岩土力学. 2023(12): 3459-3470 .
![]() | |
18. |
黄安国,何稼,邵应峰. EICP联合纤维加固边坡表层抗侵蚀试验研究. 河南科学. 2022(09): 1411-1421 .
![]() | |
19. |
申春妮,方祥位,胡丰慧,姚志华,李洋洋. 珊瑚砂地基中微生物珊瑚砂桩承载特性试验研究. 岩土工程学报. 2022(S1): 68-73 .
![]() |