ZHANG Dongmei, GUO Li, SHEN Yiyao, HUANG Zhongkai. Probabilistic density evolution analysis of dynamic response of tunnels under stochastic earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 21-25, 37. DOI: 10.11779/CJGE2024S20033
    Citation: ZHANG Dongmei, GUO Li, SHEN Yiyao, HUANG Zhongkai. Probabilistic density evolution analysis of dynamic response of tunnels under stochastic earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 21-25, 37. DOI: 10.11779/CJGE2024S20033

    Probabilistic density evolution analysis of dynamic response of tunnels under stochastic earthquakes

    More Information
    • Received Date: June 20, 2024
    • Due to the stochastic characteristics of ground motion, it is difficult for the deterministic method to completely consider the complex stochastic characteristics of ground motion. It is of great practical significance to study the seismic response of tunnel structures by using the stochastic analysis method for the seismic design of underground structures. In this study, the research object is a typical circular tunnel structure in soft soils. First, a nonlinear interaction analysis model for the underground soil tunnel in a typical project site is established. Then, a random seismic model is used to generate a non-stationary seism that matches the requirements of the seismic design code. A probability density evolution analysis method is introduced into the seismic analysis of the tunnel structure, which initially explores the evolution characteristics of the probability density of its seismic performance. Using the tunnel inclination angle as the seismic performance index, the probability density function of the tunnel structural response is solved by using the probability density evolution method, and the exceedance probabilities of the tunnel inclination angle are obtained when the tunnel has no damage, slight damage, moderate damage and severe damage. The results show that the exceedance probabilities of the tunnel inclination angle in the four damage states are 98.88%, 86.10%, 30.90% and 3.70%, respectively. The proposed probability density evolution method can accurately obtain the instantaneous probability information of the tunnel inclination angle, and provide a new prospect for the study on the probability evolution characteristics of seismic performance of the tunnel structures.
    • [1]
      何川, 李林, 张景, 等. 隧道穿越断层破碎带震害机理研究[J]. 岩土工程学报, 2014, 36(3): 427-434. doi: 10.11779/CJGE201403004

      HE Chuan, LI Lin, ZHANG Jing, et al. Seismic damage mechanism of tunnels through fault zones[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 427-434. (in Chinese) doi: 10.11779/CJGE201403004
      [2]
      高波, 王峥峥, 袁松, 等. 汶川地震公路隧道震害启示[J]. 西南交通大学学报, 2009, 44(3): 336-341, 374. doi: 10.3969/j.issn.0258-2724.2009.03.005

      GAO Bo, WANG Zhengzheng, YUAN Song, et al. Lessons learnt from damage of highway tunnels in Wenchuan earthquake[J]. Journal of Southwest Jiaotong University, 2009, 44(3): 336-341, 374. (in Chinese) doi: 10.3969/j.issn.0258-2724.2009.03.005
      [3]
      HUANG Z K, PITILAKIS K, ARGYROUDIS S, et al. Selection of optimal intensity measures for fragility assessment of circular tunnels in soft soil deposits[J]. Soil Dynamics and Earthquake Engineering, 2021, 145: 106724. doi: 10.1016/j.soildyn.2021.106724
      [4]
      汪振. 跨活动断裂带岩体隧道抗错断措施及其减灾效果与机理研究[D]. 北京: 北京工业大学, 2022.

      WANG Zhen. Study on anti-fault measures and disaster reduction effect and mechanism of rock tunnel across active fault zone[D]. Beijing: Beijing University of Technology, 2022. (in Chinese)
      [5]
      LI J, CHEN J B. The principle of preservation of probability and the generalized density evolution equation[J]. Structural Safety, 2008, 30(1): 65-77. doi: 10.1016/j.strusafe.2006.08.001
      [6]
      LI J, CHEN J B. Stochastic Dynamics of Structures[M]. Newyork: Wiley, 2009.
      [7]
      孔宪京, 庞锐, 徐斌, 等. 考虑堆石料软化的坝坡随机地震动力稳定分析[J]. 岩土工程学报, 2019, 41(3): 414-421. doi: 10.11779/CJGE201903002

      KONG Xianjing, PANG Rui, XU Bin, et al. Stochastic seismic stability analysis of dam slopes considering softening of rockfills[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 414-421. (in Chinese) doi: 10.11779/CJGE201903002
      [8]
      HUANG Y, XIONG M. Dynamic reliability analysis of slopes based on the probability density evolution method[J]. Soil Dynamics and Earthquake Engineering, 2017, 94: 1-6. doi: 10.1016/j.soildyn.2016.11.011
      [9]
      徐斌, 陈柯好, 王星亮, 等. 液化土中管道随机地震响应分析与可靠度评价研究[J]. 岩土工程学报, 2024, 46(1): 81-89. doi: 10.11779/CJGE20221096

      XU Bin, CHEN Kehao, WANG Xingliang, et al. Stochastic seismic response analysis and reliability evaluation of pipelines in liquefied soil[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 81-89. (in Chinese) doi: 10.11779/CJGE20221096
      [10]
      李杰, 艾晓秋. 基于物理的随机地震动模型研究[J]. 地震工程与工程振动, 2006, 26(5): 21-26.

      LI Jie, AI Xiaoqiu. Study on random model of earthquake ground motion based on physical process[J]. Earthquake Engineering and Engineering Dynamics, 2006, 26(5): 21-26. (in Chinese)
      [11]
      PENG Y B, MEI Z, LI J. Stochastic seismic response analysis and reliability assessment of passively damped structures[J]. Journal of Vibration and Control, 2014, 20(15): 2352-2365. doi: 10.1177/1077546313486910
      [12]
      CHEN J B, LI J. Stochastic seismic response analysis of structures exhibiting high nonlinearity[J]. Computers & Structures, 2010, 88(7/8): 395-412.
      [13]
      ISHIBASHI I, ZHANG X J. Unified dynamic shear moduli and damping ratios of sand and clay[J]. Soils and Foundations, 1993, 33(1): 182-191. doi: 10.3208/sandf1972.33.182
      [14]
      ANASTASOPOULOS I, GEORGARAKOS T, GEORGIANNOU V, et al. Seismic performance of bar-mat reinforced-soil retaining wall: Shaking table testing versus numerical analysis with modified kinematic hardening constitutive model[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(10): 1089-1105. doi: 10.1016/j.soildyn.2010.04.020
      [15]
      ANASTASOPOULOS I, GELAGOTI F, KOURKOULIS R, et al. Simplified constitutive model for simulation of cyclic response of shallow foundations: validation against laboratory tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(12): 1154-1168.
      [16]
      HASHASH Y M A, HOOK J J, SCHMIDT B, et al. Seismic design and analysis of underground structures[J]. Tunnelling and Underground Space Technology, 2001, 16(4): 247-293.
      [17]
      LYSMER J, KUHLEMEYER R L. Finite dynamic model for infinite media[J]. Journal of the Engineering Mechanics Division, 1969, 95(4): 859-877.
      [18]
      KOIZUMO A. Seismic Damages and Case Study for Shield Tunnel[M]. Beijing: China Architecture and Building Press, 2009.
      [19]
      王继栋. 基于pushover法地铁盾构隧道抗震弹塑性分析及性能指标研究[D]. 成都: 西南交通大学, 2016.

      WANG Jidong. Elasto-plastic Analysis and Performance Index Research of Subway Shield Tunnel Based on Pushover Method[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese)
    • Related Articles

      [1]ZHOU Feng-xi, ZHOU Zhi-xiong, SHAO Sheng-jun. Wetting deformation properties of unsaturated collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 36-40. DOI: 10.11779/CJGE2021S1007
      [2]ZHU Cai-hui, LI Ning. Moistening effects of high-fill embankment due to rainfall infiltration in loess gully region[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 845-854. DOI: 10.11779/CJGE202005006
      [3]LI Tao, JIANG Ming-jing, ZHANG Peng. DEM analyses of oedometer and wetting tests on unsaturated structured loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 39-44. DOI: 10.11779/CJGE2018S1007
      [4]LI Shan-shan, LI Da-yong, GAO Yu-feng. Determination of maximum and minimum void ratios of sands and their influence factors[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 554-561. DOI: 10.11779/CJGE201803021
      [5]WANG Nai, WANG Lan-min. Characteristics and influencing factors of seismic loess slopes in valley areas[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 434-438.
      [6]WU Xu-ping, DING Chun-lin. Damage properties and influence factors of remolded frozen clay[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2038-2044.
      [7]REN Lian-wei, WANG Jun-lin. Factors for horizontal bearing capacity of large-diameter belled piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 299-303.
      [8]ZHAO Jian-bin, Shi Yong-qiang, YANG Jun. Influencing factors for bearing capacity of statically pressed pipe piles based on grey theory[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 394-398.
      [9]CHENG Dongxing, LIU Daan, DING Enbao, ZHAO Hongmin, PAN Wei, GUO Huafeng. Analysis on influential factors and toppling conditions of toppling rock slope[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 127-131.
      [10]REN Jianxi, JIANG Yu, GE Xiurun. Test and analysis on rock fatigue life due to affecting factors under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 47-50.
    • Cited by

      Periodical cited type(8)

      1. 杨威. 基于原位测试方法的土体变形参数研究. 安徽建筑. 2024(04): 141-143 .
      2. 黄献文,姚直书,蔡海兵,李凯奇,唐楚轩. 基于微观结构重塑的非饱和冻土导热系数预测. 岩土力学. 2023(01): 193-205 .
      3. 陈磊. 基于静力触探测试的深基坑工程土体设计参数应用研究. 广东建材. 2023(04): 72-75 .
      4. 张德,张泽超,张璐璐,张洁,曹子君. 场地有限数据条件下土体不排水抗剪强度的概率分布的贝叶斯估计研究. 岩土工程学报. 2023(06): 1259-1268 . 本站查看
      5. 曹阳健. 基于原位测试方法的土体变形参数研究. 砖瓦. 2023(06): 66-69 .
      6. 汪明元,张国,潘孙珏徐,陶袁钦. 基于集合卡尔曼滤波的海洋土孔隙率预测研究. 工业建筑. 2023(06): 37-42 .
      7. 黄献文,赵光明,黄顺杰,王泽洲,王雪松,唐楚轩. 基于堆积颗粒几何特征的多尺度渗透注浆扩散半径预测. 岩石力学与工程学报. 2023(08): 2028-2040 .
      8. 柯琪睿,李长冬,姚文敏,范一博,李炳辰. 干湿循环下侏罗系软弱夹层剪切特性与抗剪强度参数概率表征. 水利水电技术(中英文). 2023(11): 192-204 .

      Other cited types(6)

    Catalog

      Article views (113) PDF downloads (24) Cited by(14)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return