ZHOU Yanguo, WANG Chun, ZHUANG Duanyang, YAO Pengfei, ZHANG Dongchao. Energy-based evaluation method for soil densification effects induced by vibro-compaction of stone columns[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 16-20. DOI: 10.11779/CJGE2024S20013
    Citation: ZHOU Yanguo, WANG Chun, ZHUANG Duanyang, YAO Pengfei, ZHANG Dongchao. Energy-based evaluation method for soil densification effects induced by vibro-compaction of stone columns[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 16-20. DOI: 10.11779/CJGE2024S20013

    Energy-based evaluation method for soil densification effects induced by vibro-compaction of stone columns

    More Information
    • Received Date: June 20, 2024
    • In view of the fact that the conventional ground inspection methods are not suitable for the real-time monitoring and quality check of ground improvements due to the limitations in timely and full-scale inspection, an energy-based evaluation method for soil densification effects induced by vibro-compaction of stone columns is proposed, which can timely estimate the average densification effects of soils between stone columns. Based on the propagation theory of elastic waves in foundation, a calculation procedure of energy absorbed by soils is established, and the corresponding undrained cyclic triaxial tests on a prototype silty sand are conducted to establish the empirical model for generation of the excess pore water pressure. Then a case study of a reservoir dam project is conducted. It is found that, compared with that of the field monitored excess pore water pressure and the final void ratio obtained via post-construction inspection, the prediction accuracy of the proposed method is about 90%, which preliminarily validate the feasibility of the proposed method.
    • [1]
      叶观宝, 苌红涛, 徐超, 等. 无填料振冲法在液化粉细砂中的应用研究[J]. 岩土工程学报, 2009, 31(6): 917-921. doi: 10.3321/j.issn:1000-4548.2009.06.016

      YE Guanbao, CHANG Hongtao, XU Chao, et al. Application of vibroflotation without backfill in liquefiable silty and fine sand[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 917-921. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.06.016
      [2]
      何广讷. 评价土体液化势的能量法[J]. 岩土工程学报, 1981, 3(4): 11-21. doi: 10.3321/j.issn:1000-4548.1981.04.002

      HE Guangne. Energy analysis procedure for evaluating soil liquefaction potential[J]. Chinese Journal of Geotechnical Engineering, 1981, 3(4): 11-21. (in Chinese) doi: 10.3321/j.issn:1000-4548.1981.04.002
      [3]
      GREEN R A, MITCHELL J K. Energy-based evaluation and remediation of liquefiable soils[C]// Geotechnical Engineering for Transportation Projects. Los Angeles, 2004.
      [4]
      HOLEYMAN A E. An earthquake engineering approach to vibro-compaction[C]// 14th International Conference on Soil Mechanics and Foundation Engineering, Hamburg, 1999.
      [5]
      NAGY P, PISTROL J, KOPF F, et al. Integrated compaction control based on the motion behavior of a deep vibrator[J]. Transportation Geotechnics, 2021, 28: 100539. doi: 10.1016/j.trgeo.2021.100539
      [6]
      黄茂松, 陈云敏, 吴世明. 振冲碎石桩加固饱和粉砂粉土地基试验研究[J]. 岩土工程学报, 1992, 14(6): 69-73. doi: 10.3321/j.issn:1000-4548.1992.06.008

      HUANG Maosong, CHEN Yunmin, WU Shiming. Strengthening of saturated silty soils by vibro replacement stone columns[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(6): 69-73. (in Chinese) doi: 10.3321/j.issn:1000-4548.1992.06.008
      [7]
      SHENTHAN T, NASHED R, THEVANAYAGAM S, et al. Liquefaction mitigation in silty soils using composite stone columns and dynamic compaction[J]. Earthquake Engineering and Engineering Vibration, 2004, 3(1): 39-50. doi: 10.1007/BF02668849
      [8]
      王桂萱, 桑野二郎, 竹村次朗. 循环荷载下砂质混合土孔隙水压力特性研究[J]. 岩土工程学报, 2004, 26(4): 541-545. doi: 10.3321/j.issn:1000-4548.2004.04.023

      WANG Guixuan, JIRO Kuwano, JIRO Takemura. Study on excess pore water pressures of sands mixed with clays under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 541-545. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.04.023
      [9]
      张建民, 谢定义. 饱和砂土振动孔隙水压力增长的实用算法[J]. 水利学报, 1991, 22(8): 45-51. doi: 10.3321/j.issn:0559-9350.1991.08.007

      ZHANG Jianmin, XIE Dingyi. Practical algorithm for increasing vibration pore water pressure in saturated sand[J]. Journal of Hydraulic Engineering, 1991, 22(8): 45-51. (in Chinese) doi: 10.3321/j.issn:0559-9350.1991.08.007
    • Related Articles

      [1]CHI Shichun, WANG Tengteng, JIA Yufeng. Delayed crushing time for particles of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(12): 2602-2609. DOI: 10.11779/CJGE20230074
      [2]XU Wei-wei, CHEN Sheng-shui, FU Zhong-zhi, JI En-yue. Measuring method for membrane penetration capacity of coarse-grained soil in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1536-1541. DOI: 10.11779/CJGE202108019
      [3]ZHAO Xiao-dong, ZHOU Guo-qing. Creep deformation and heterogeneous characteristics for frozen soils with thermal gradient[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 390-394. DOI: 10.11779/CJGE201402017
      [4]ZHAO Kuizhi, LI Guoying. Back analysis of creep deformation and study on safety of Meixi CFRD built on riverbed alluvium[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1230-1235.
      [5]JIANG Yongdong, XIAN Xuefu, XIONG Deguo, ZHOU Fuchun. Study on creep behaviour of sandstone and its mechanical models[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1478-1481.
      [6]Wu Ziwang, Ma Wei, Pu Yibin, Chang Xiaoxiao. Submicroscopic Analysis on Deformation Characteristics in Creep Process of Frozen Soil[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(3): 4-9.
      [7]Wang Gui jun, Sun Wen ruo. Analysis  of  the  Creep  Behaviour  of  Kieselguhr[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(6): 59-64.
      [8]Sun Shoucheng, Zhang Shaozhi. A Method of Determination The Principle Strain Axis of Soil Layer in Situ and Its Experiments and Application[J]. Chinese Journal of Geotechnical Engineering, 1985, 7(2): 56-65.
      [9]Li Guangzong, Yu Jiayu. Behaviour Analysis of the Lined Top-Arch of Underground Hydro-powerhouse[J]. Chinese Journal of Geotechnical Engineering, 1982, 4(2): 86-96.
      [10]SU He-yuan. 抽、灌水作用下上海土层变形特征的探讨[J]. Chinese Journal of Geotechnical Engineering, 1979, 1(1): 24-35.
    • Cited by

      Periodical cited type(4)

      1. 黄锐,郭成超,曹鼎峰,刘志遐. 珊瑚钙质砂-聚氨酯高聚物复合体蠕变村山流变模型改进. 工程地质学报. 2024(01): 295-302 .
      2. 郭延辉,霍圆,毛肖涓,吴奇,刘星辰. 基于改进西原模型的滑坡临滑切线角预警判据研究. 自然灾害学报. 2024(05): 96-108 .
      3. 丁海滨. 利用SHPB联合测定岩石非线性系数及衰减系数的教学试验. 现代职业教育. 2023(16): 81-84 .
      4. 张强,王军保,宋战平,冯世进,张玉伟,曾涛. 循环荷载作用下盐岩微观结构变化及经验疲劳模型. 岩土力学. 2022(04): 995-1008 .

      Other cited types(14)

    Catalog

      Article views (103) PDF downloads (34) Cited by(18)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return