Citation: | LI Jiandong, YUAN Guangzong, BIAN Tianqi, ZHAO Yue, AN Xiaoyu. Influences of twin-tunnel excavation on settlement of shallow foundation buildings[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 147-151. DOI: 10.11779/CJGE2024S10015 |
[1] |
欧阳文彪, 丁文其, 谢东武. 考虑建筑刚度的盾构施工引致沉降计算方法[J]. 地下空间与工程学报, 2013, 9(1): 155-160. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201301026.htm
OUYANG Wenbiao, DING Wenqi, XIE Dongwu. Calculation method for settlement due to shield tunnelling considering structure stiffness[J]. Chinese Journal of Underground Space and Engineering, 2013, 9(1): 155-160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201301026.htm
|
[2] |
朱逢斌. 盾构隧道施工对邻近多层框架结构建筑物的影响研究[D]. 南京: 东南大学, 2015.
ZHU Fengbin. The Influence to the Existed Multi-Story Frame Structure Due to Adjacent Shield Tunneling[D]. Nanjing: Southeast University, 2015. (in Chinese)
|
[3] |
薛文, 丁智, 秦建设, 等. 软土盾构隧道掘进对邻近浅基础建筑物影响研究[J]. 现代隧道技术, 2017, 54(2): 106-113. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201702017.htm
XUE Wen, DING Zhi, QIN Jianshe, et al. Influence of shield tunnelling in soft soil on adjacent buildings with shallow foundations[J]. Modern Tunnelling Technology, 2017, 54(2): 106-113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201702017.htm
|
[4] |
李海. 盾构隧道下穿建筑物控制技术和监测[J]. 铁道建筑, 2011, 51(9): 66-68. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201109020.htm
LI Hai. Control technology and monitoring of shield tunnel passing under buildings[J]. Railway Engineering, 2011, 51(9): 66-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201109020.htm
|
[5] |
魏纲, 叶琦, 虞兴福. 杭州地铁盾构隧道掘进对建筑物影响的实测分析[J]. 现代隧道技术, 2015, 52(3): 150-159. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201503023.htm
WEI Gang, YE Qi, YU Xingfu. Field monitoring and analysis of the influence of shield tunnelling for the Huangzhou metro on existing buildings[J]. Modern Tunnelling Technology, 2015, 52(3): 150-159. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201503023.htm
|
[6] |
赵立财. 隧道开挖对既有建筑物影响的离心试验研究[J]. 华北水利水电大学学报(自然科学版), 2022, 43(4): 54-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HBSL202204008.htm
ZHAO Licai. Centrifuge test study on the influence of tunnel excavation on the existing buildings[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2022, 43(4): 54-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HBSL202204008.htm
|
[7] |
张宇亭, 安晓宇, 晋亚斐. 隧道开挖引起上部建筑物沉降的离心模型试验研究[J]. 岩土工程学报, 2022, 44(增刊2): 54-57. doi: 10.11779/CJGE2022S2012
ZHANG Yuting, AN Xiaoyu, JIN Yafei. Centrifugal model test study on settlement of superstructure caused by tunnel excavation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 54-57. (in Chinese) doi: 10.11779/CJGE2022S2012
|
[8] |
王云平. 隧道施工对地层及建筑物影响的模型试验研究[J]. 山西建筑, 2023, 49(16): 140-142. https://www.cnki.com.cn/Article/CJFDTOTAL-JZSX202316038.htm
WANG Yunping. Model test study on the influence of tunnel construction on stratum deformation and buildings[J]. Shanxi Architecture, 2023, 49(16): 140-142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZSX202316038.htm
|
[9] |
伍廷亮, 张建新, 孟光. 隧道盾构施工引起邻近建筑物及其桩基变形的数值分析[J]. 煤田地质与勘探, 2012, 40(6): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201206012.htm
WU Tingliang, ZHANG Jianxin, MENG Guang. Numberical analysis in the deformation of adjacent buildings and underground pile caused by tunnel shield construction[J]. Coal Geology & Exploration, 2012, 40(6): 39-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201206012.htm
|
[10] |
孙宇坤. 受盾构隧道施工影响的砌体结构房屋性状研究[D]. 杭州: 浙江大学, 2012.
SUN Yukun. Research on the Mechanical Behaviors of Masonry Building Induced by Shield Tunneling Construction[D]. Hangzhou: Zhejiang University, 2012. (in Chinese)
|
[11] |
徐明, 邹文浩, 章龙管. 房屋刚度对隧道开挖引起的土体变形的影响[J]. 岩石力学与工程学报, 2014, 33(4): 838-848. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404022.htm
XU Ming, ZOU Wenhao, ZHANG Longguan. Influence of building stiffness on soil deformation induced by tunnelling[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(4): 838-848. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201404022.htm
|
[1] | LIU Si-hong, SHAO Dong-chen, SHEN Chao-min, WANG Zi-jian. Microstructure-based elastoplastic constitutive model for coarse-grained materials[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 777-783. DOI: 10.11779/CJGE201705001 |
[2] | LI Jian, ZHAO Cheng-gang, HUANG Qi-di. Constitutive modeling with double-scale pore structure for coupling of capillary hysteresis and stress-strain behaviours in unsaturated expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2127-2133. |
[3] | PENG Fang-le, CAO Yan-bo. FEM analysis of effect of reinforced layer numbers on bearing capacity and deformation of reinforced-sand retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1700-1707. |
[4] | Elastoplastic damage coupled model for gas-saturated coal under triaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1). |
[5] | XU Chengshun, LUAN Maotian, GUO Ying, ZHANG Zhendong. Elasto-plastic constitutive model of sand considering initial anisotropy and its verification through experiments[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 546-551. |
[6] | Lv Xilin, HUANG Maosong, QIAN Jiangu. Bifurcation analysis in true traxial tests on sands based on non-coaxial elasto-plasticity model[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 646-651. |
[7] | LI Hongru, HU Zaiqiang, CHEN Cunli, XIE Dingyi. Approach of soil dynamic response analysis based on physical state constitutive relationship[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 503-510. |
[8] | WANG Gang, ZHANG Jianmin. A cyclic elasto-plastic constitutive model for evaluating large liquefaction-induced deformation of sand[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 51-59. |
[9] | CAO Xueshan. Elastoplastic constitutive model of unsaturated expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 832-836. |
[10] | Yu Maohong, Yang Songyan, Fan Saucheong, Fung Tatching. Twin Shear Unified Elasto-Plastic Constitutive Model and Its Applications[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(6): 2-10. |
1. |
朱才辉,周小松,乔建伟,李鑫磊. 孔内深层强夯法处理湿陷性黄土地基试验研究. 自然灾害学报. 2025(01): 217-229 .
![]() | |
2. |
张子萱,曹宝花,韩泽敏,许江波,程芳卉,陈绍华,侯鑫敏,詹皓辰. PFC3D颗粒流模拟纳米黏土改良黄土三轴试验. 岩土工程技术. 2024(03): 365-373 .
![]() | |
3. |
杨智慧,李珊花. 基于PFC~(2D)的水泥土单轴压缩试验及细观数值模拟. 中外公路. 2023(01): 189-193 .
![]() | |
4. |
刘欢,张庆文,连晓兰,朱孟龙,聂广影. 非饱和绢云母片岩残积土一维压缩变形规律. 科学技术与工程. 2021(03): 1131-1137 .
![]() | |
5. |
李涛,蒋明镜,李立青. 非饱和重塑黄土应变控制等应力比试验三维离散元分析. 水利与建筑工程学报. 2021(02): 36-41 .
![]() | |
6. |
蒋明镜,王优群,卢国文,张鹏. 非饱和重塑与结构性黄土平面应变试验三维离散元模拟. 水利与建筑工程学报. 2021(02): 1-5+18 .
![]() | |
7. |
李瑶,伏映鹏,廖红建,吕龙龙,董琪. 考虑吸力作用的非饱和土离散元模型及细观参数影响分析. 岩土工程学报. 2021(S1): 246-250 .
![]() | |
8. |
米文静,张爱军,刘争宏,刘宏泰. 黄土自重湿陷变形的多地层离心模型试验方法. 岩土工程学报. 2020(04): 678-687 .
![]() | |
9. |
蒋明镜. 现代土力学研究的新视野——宏微观土力学. 岩土工程学报. 2019(02): 195-254 .
![]() | |
10. |
蒋明镜,张浩泽,李涛,张鹏. 非饱和重塑与结构性黄土等向压缩试验离散元分析. 岩土工程学报. 2019(S2): 121-124 .
![]() |