• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HOU Shiwei, HOU Jinzhao, DU Xiuli, MENG Suyun, QU Jinhong. Strain localization tests of soils and mechanism based on cell model[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 64-68. DOI: 10.11779/CJGE2024S10012
Citation: HOU Shiwei, HOU Jinzhao, DU Xiuli, MENG Suyun, QU Jinhong. Strain localization tests of soils and mechanism based on cell model[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 64-68. DOI: 10.11779/CJGE2024S10012

Strain localization tests of soils and mechanism based on cell model

More Information
  • Received Date: April 30, 2024
  • The fragmentation and naturalness of soils make their deformation and strength characteristics have obvious scale effects. Therefore, in order to study the strain localization process of the soils, the distribution and proportional relationship of graded particles cannot be ignored, and the macroscopic mechanical properties must be characterized from multiple scales. Based on the theory of cell model, the soils are regarded as a granular material composed of reinforced particles and matrix. The intrinsic scale law of the samples with different reinforced particle sizes is studied through the triaxial compression tests, and the formation process and initiation mechanism of shear band at meso level are studied through the numerical simulation. The average strain energy release coefficient is introduced to quantitatively verify the strain energy conversion of the soils after reaching the peak stress, and the multi-band initiation and progressive competition process are reproduced. The results show that the strength tests of reinforced particles with different size scales indicate that the discontinuity of particles makes the soils have size effects, and the ratio of intrinsic scale to particle size decreases with the increase of the reinforced particle size. Before the stress peak, the non-elastic dissipative energy increases, leading to strain localization. After the peak, the strain rapidly increases within the shear band, while there is a rebound outside the band.
  • [1]
    加瑞, 李逸群, 雷华阳, 等. 基于三轴不排水有效应力路径的结构性剑桥模型的修正研究[J]. 岩土工程学报(录用待发). DOI: 10.11779/CJGE20231243.

    JIA Rui, LI Yiqun, LEI Huayang, et al. Revision of structural cambridge model based on triaxial undrained effective stress path[J]. Chinese Journal of Geotechnical Engineering (accepted). DOI: 10.11779/CJGE20231243.(inChinese)
    [2]
    房营光. 土体力学特性尺度效应的三轴抗剪试验分析[J]. 水利学报, 2014, 45(6): 742-748, 755. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201406014.htm

    FANG Yingguang. Three-axial shear test analysis of scale effects on soil mechanical properties[J]. Journal of Hydraulic Engineering, 2014, 45(6): 742-748, 755. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201406014.htm
    [3]
    SHI D, NIU J, ZHANG J, et al. Effects of particle breakage on the mechanical characteristics of geogrid-reinforced granular soils under triaxial shear: A DEM investigation[J]. Geomechanics for Energy and the Environment, 2023, 34(4): 100446.
    [4]
    HU Z, GUO N, YANG Z X. Effect of fines loss on the microstructure and shear behaviors of gap-graded soils: A multiscale perspective[J]. Computers and Geotechnics, 2023, 162: 105711. doi: 10.1016/j.compgeo.2023.105711
    [5]
    LUO S, GONG F, LI L, et al. Linear energy storage and dissipation laws and damage evolution characteristics of rock under triaxial cyclic compression with different confining pressures[J]. Transactions of Nonferrous Metals Society of China, 2023, 33(7): 2168-2182. doi: 10.1016/S1003-6326(23)66251-X
    [6]
    DONG T, ZHENG Y, LIANG K, et al. Shear strength and shear bands of anisotropic sand[J]. Acta Geotechnica, 2022, 17: 2841-2853. doi: 10.1007/s11440-021-01372-w
    [7]
    TANG J, WANG X, CHEN X, et al. Geotechnical Strain Localization Analysis Based on Micropolar Continuum Theory Considering Evolution of Internal Characteristic Length[J]. International Journal of Geomechanics, 2022, 22(8): 06022016. doi: 10.1061/(ASCE)GM.1943-5622.0002462
    [8]
    刘嘉, 冯德銮. 考虑土颗粒微细观运动的多尺度耦合有限元分析方法[J]. 岩土力学, 2021, 42(4): 1186-1199. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104032.htm

    LIU Jia, FENG Deluan. Multiscale coupled finite element analysis considering microscopic movement of soil particles[J]. Rock and Soil Mechanics, 2021, 42(4): 1186-1199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104032.htm
  • Cited by

    Periodical cited type(16)

    1. 孙冠华,王娇,于显杨,易琪,朱开源,王章星,耿璇,屈杰. 压缩空气储能电站地下内衬硐库基本原理与分析方法研究进展. 岩土力学. 2025(01): 1-25 .
    2. 傅丹,伍鹤皋,李鹏,张米高杨. 压气储能地下洞室密封钢衬-围岩之间循环接触传力行为的数值模拟. 太阳能学报. 2025(03): 25-33 .
    3. 蒋中明,甘露,张登祥,肖喆臻,廖峻慧. 压气储能地下储气库衬砌裂缝分布特征及演化规律研究. 岩土工程学报. 2024(01): 110-119 . 本站查看
    4. 阮泉泉,张文,张彬,王其宽,王汉勋,时广升. 不同洞距下内衬式高压储气库热-力特性分析. 隧道与地下工程灾害防治. 2024(01): 73-83 .
    5. 刘钦节,陈强,付强,吴犇牛,杨卿干. 过断层压气储能巷道围岩变形特征与支护优化. 安徽理工大学学报(自然科学版). 2024(02): 67-74 .
    6. 杨雪雯,任灏,廖泽球,王金玺,贾斌. 压缩空气储能地下人工洞室研究现状与展望. 南方能源建设. 2024(04): 54-64 .
    7. 贾宁,刘顺,王洪播. 压缩空气储能人工硐库热力耦合解析方法研究. 岩土力学. 2024(08): 2263-2278+2289 .
    8. 周小松,闫磊,黄康康,孙高博,刘卫. 圆形截面隧道式储气库群布局参数研究. 地下空间与工程学报. 2024(S1): 205-212 .
    9. 张国华,相月,王薪锦,熊峰,唐志成,华东杰. 压气储能地下内衬储气库结构荷载分担解析解及影响因素分析. 岩石力学与工程学报. 2024(S2): 3633-3650 .
    10. 蒋中明,刘宇婷,陆希,杨雪,廖峻慧,刘琛智,黄湘宜,周婉芬,石兆丰,田湘. 压气储能内衬硐室储气关键问题与设计要点评述. 岩土力学. 2024(12): 3491-3509 .
    11. 张国华,王薪锦,相月,潘佳,熊峰,华东杰,唐志成. 压缩空气硬岩储库关键问题研究进展:气密性能、热力过程与稳定性. 岩石力学与工程学报. 2024(11): 2601-2626 .
    12. 张国华,王薪锦,柯洪,相月,郭辉,熊峰,华东杰. 压气储能地下内衬储气库运行压力区间确定方法. 岩石力学与工程学报. 2024(12): 2874-2891 .
    13. 邓申缘,姜清辉,位伟. 基于循环硬化模型的压气硐库围岩力学及变形分析. 岩石力学与工程学报. 2024(12): 2980-2991 .
    14. 蔚立元,弭宪震,胡波文,李树忱,刘日成,叶继红. 内衬式岩洞储氢三维热-流-固耦合模型及洞群运营稳定性分析. 中国矿业大学学报. 2024(06): 1099-1116 .
    15. 杨雪雯. 压气储能电站地下人工洞室上覆岩体抗抬稳定影响因素分析. 内蒙古电力技术. 2024(06): 8-13 .
    16. 周小松,闫磊,黄康康,王颖蛟,申律. 圆形截面隧道式地下储气库容量研究. 科技创新与应用. 2023(30): 72-75 .

    Other cited types(9)

Catalog

    Article views PDF downloads Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return