Citation: | HOU Shiwei, HOU Jinzhao, DU Xiuli, MENG Suyun, QU Jinhong. Strain localization tests of soils and mechanism based on cell model[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 64-68. DOI: 10.11779/CJGE2024S10012 |
[1] |
加瑞, 李逸群, 雷华阳, 等. 基于三轴不排水有效应力路径的结构性剑桥模型的修正研究[J]. 岩土工程学报(录用待发). DOI: 10.11779/CJGE20231243.
JIA Rui, LI Yiqun, LEI Huayang, et al. Revision of structural cambridge model based on triaxial undrained effective stress path[J]. Chinese Journal of Geotechnical Engineering (accepted). DOI: 10.11779/CJGE20231243.(inChinese)
|
[2] |
房营光. 土体力学特性尺度效应的三轴抗剪试验分析[J]. 水利学报, 2014, 45(6): 742-748, 755. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201406014.htm
FANG Yingguang. Three-axial shear test analysis of scale effects on soil mechanical properties[J]. Journal of Hydraulic Engineering, 2014, 45(6): 742-748, 755. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201406014.htm
|
[3] |
SHI D, NIU J, ZHANG J, et al. Effects of particle breakage on the mechanical characteristics of geogrid-reinforced granular soils under triaxial shear: A DEM investigation[J]. Geomechanics for Energy and the Environment, 2023, 34(4): 100446.
|
[4] |
HU Z, GUO N, YANG Z X. Effect of fines loss on the microstructure and shear behaviors of gap-graded soils: A multiscale perspective[J]. Computers and Geotechnics, 2023, 162: 105711. doi: 10.1016/j.compgeo.2023.105711
|
[5] |
LUO S, GONG F, LI L, et al. Linear energy storage and dissipation laws and damage evolution characteristics of rock under triaxial cyclic compression with different confining pressures[J]. Transactions of Nonferrous Metals Society of China, 2023, 33(7): 2168-2182. doi: 10.1016/S1003-6326(23)66251-X
|
[6] |
DONG T, ZHENG Y, LIANG K, et al. Shear strength and shear bands of anisotropic sand[J]. Acta Geotechnica, 2022, 17: 2841-2853. doi: 10.1007/s11440-021-01372-w
|
[7] |
TANG J, WANG X, CHEN X, et al. Geotechnical Strain Localization Analysis Based on Micropolar Continuum Theory Considering Evolution of Internal Characteristic Length[J]. International Journal of Geomechanics, 2022, 22(8): 06022016. doi: 10.1061/(ASCE)GM.1943-5622.0002462
|
[8] |
刘嘉, 冯德銮. 考虑土颗粒微细观运动的多尺度耦合有限元分析方法[J]. 岩土力学, 2021, 42(4): 1186-1199. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104032.htm
LIU Jia, FENG Deluan. Multiscale coupled finite element analysis considering microscopic movement of soil particles[J]. Rock and Soil Mechanics, 2021, 42(4): 1186-1199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104032.htm
|
1. |
孙冠华,王娇,于显杨,易琪,朱开源,王章星,耿璇,屈杰. 压缩空气储能电站地下内衬硐库基本原理与分析方法研究进展. 岩土力学. 2025(01): 1-25 .
![]() | |
2. |
傅丹,伍鹤皋,李鹏,张米高杨. 压气储能地下洞室密封钢衬-围岩之间循环接触传力行为的数值模拟. 太阳能学报. 2025(03): 25-33 .
![]() | |
3. |
蒋中明,甘露,张登祥,肖喆臻,廖峻慧. 压气储能地下储气库衬砌裂缝分布特征及演化规律研究. 岩土工程学报. 2024(01): 110-119 .
![]() | |
4. |
阮泉泉,张文,张彬,王其宽,王汉勋,时广升. 不同洞距下内衬式高压储气库热-力特性分析. 隧道与地下工程灾害防治. 2024(01): 73-83 .
![]() | |
5. |
刘钦节,陈强,付强,吴犇牛,杨卿干. 过断层压气储能巷道围岩变形特征与支护优化. 安徽理工大学学报(自然科学版). 2024(02): 67-74 .
![]() | |
6. |
杨雪雯,任灏,廖泽球,王金玺,贾斌. 压缩空气储能地下人工洞室研究现状与展望. 南方能源建设. 2024(04): 54-64 .
![]() | |
7. |
贾宁,刘顺,王洪播. 压缩空气储能人工硐库热力耦合解析方法研究. 岩土力学. 2024(08): 2263-2278+2289 .
![]() | |
8. |
周小松,闫磊,黄康康,孙高博,刘卫. 圆形截面隧道式储气库群布局参数研究. 地下空间与工程学报. 2024(S1): 205-212 .
![]() | |
9. |
张国华,相月,王薪锦,熊峰,唐志成,华东杰. 压气储能地下内衬储气库结构荷载分担解析解及影响因素分析. 岩石力学与工程学报. 2024(S2): 3633-3650 .
![]() | |
10. |
蒋中明,刘宇婷,陆希,杨雪,廖峻慧,刘琛智,黄湘宜,周婉芬,石兆丰,田湘. 压气储能内衬硐室储气关键问题与设计要点评述. 岩土力学. 2024(12): 3491-3509 .
![]() | |
11. |
张国华,王薪锦,相月,潘佳,熊峰,华东杰,唐志成. 压缩空气硬岩储库关键问题研究进展:气密性能、热力过程与稳定性. 岩石力学与工程学报. 2024(11): 2601-2626 .
![]() | |
12. |
张国华,王薪锦,柯洪,相月,郭辉,熊峰,华东杰. 压气储能地下内衬储气库运行压力区间确定方法. 岩石力学与工程学报. 2024(12): 2874-2891 .
![]() | |
13. |
邓申缘,姜清辉,位伟. 基于循环硬化模型的压气硐库围岩力学及变形分析. 岩石力学与工程学报. 2024(12): 2980-2991 .
![]() | |
14. |
蔚立元,弭宪震,胡波文,李树忱,刘日成,叶继红. 内衬式岩洞储氢三维热-流-固耦合模型及洞群运营稳定性分析. 中国矿业大学学报. 2024(06): 1099-1116 .
![]() | |
15. |
杨雪雯. 压气储能电站地下人工洞室上覆岩体抗抬稳定影响因素分析. 内蒙古电力技术. 2024(06): 8-13 .
![]() | |
16. |
周小松,闫磊,黄康康,王颖蛟,申律. 圆形截面隧道式地下储气库容量研究. 科技创新与应用. 2023(30): 72-75 .
![]() |