• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
A Discrete Element Modeling Study on CPT Penetration of Calcareous Sand Considering Dual Porosity Structure[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240888
Citation: A Discrete Element Modeling Study on CPT Penetration of Calcareous Sand Considering Dual Porosity Structure[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240888

A Discrete Element Modeling Study on CPT Penetration of Calcareous Sand Considering Dual Porosity Structure

More Information
  • Received Date: September 02, 2024
  • Available Online: July 10, 2025
  • This paper introduces a discrete element numerical simulation method for calcareous sand particles that incorporates dual porosity structures. The method focuses on three key characteristics of calcareous sand in comparison to quartz sand: abundant dual porosity structure, pronounced particle aspect ratio, and susceptibility to breakage. The study involves CPT penetration simulations to analyze the effects on cone tip resistance, side friction, force chain transmission, and displacement fields during penetration. The findings indicate that internal porosity is the primary factor influencing the overall strength of the particles, while external porosity significantly affects the contact strength between particles. As the internal and external porosity of calcareous sand increases, the maximum values of cone tip resistance and side friction during CPT penetration decrease accordingly. Simultaneously, the stable region of the penetration curve expands, and the evolution of force chains and displacement fields is suppressed. Moreover, the aspect ratio of particle shape has a significant impact on the packing behavior of calcareous sand and also influences CPT penetration outcomes. The susceptibility of calcareous sand particles to breakage is a notable characteristic, with internal porosity playing a crucial role in particle breakage. The proposed model offers valuable insights for in-situ testing of calcareous sand.
  • Related Articles

    [1]MU Linlong, WANG Chao, WANG Le, CAO Jie, ZHANG Peiyun. Experimental study on permeability characteristics of crushed stone considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(S1): 10-15. DOI: 10.11779/CJGE2025S10045
    [2]WANG Gang, YANG Jun-jie, WANG Zhao-nan. Evolution of critical state of calcareous sand during particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1511-1517. DOI: 10.11779/CJGE202108016
    [3]WANG Zhao-nan, WANG Gang, YE Qin-guo, YIN Hao. Particle breakage model for coral sand under triaxial compression stress paths[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 540-546. DOI: 10.11779/CJGE202103017
    [4]ZHENG Jin-hui, QI Chang-guang, WANG Xin-quan, SHAN Yan-ling, LAI Wen-jie, WANG Liang-zhi. Elasto-plastic analysis of cylindrical cavity expansion considering particle breakage of sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2156-2164. DOI: 10.11779/CJGE201911023
    [5]LIU Su, WANG Jian-feng. An approach for modelling particle breakage based on discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1706-1713. DOI: 10.11779/CJGE201809018
    [6]XU Kun, ZHOU Wei, MA Gang, CHANG Xiao-lin, YANG Li-fu. Review of particle breakage simulation based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 880-889. DOI: 10.11779/CJGE201805013
    [7]CAI Zheng-yin, LI Xiao-mei, GUAN Yun-fei, HUANG Ying-hao. Particle breakage rules of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 923-929. DOI: 10.11779/CJGE201605019
    [8]JIA Yu-feng, WANG Bing-shen, CHI Shi-chun. Particle breakage of rockfill during triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1692-1697. DOI: 10.11779/CJGE201509018
    [9]CHEN Sheng-shui, FU Zhong-zhi, HAN Hua-qiang, PENG Cheng. An elastoplastic model for rockfill materials considering particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1489-1495.
    [10]WEI Song, ZHU Jungao, QIAN Qihu, LI Fan. Particle breakage of coarse-grained materials in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 533-538.
  • Cited by

    Periodical cited type(13)

    1. 张沛杰,王展亮. 石灰和水泥改良软土力学性能及水稳定性研究. 湖南工程学院学报(自然科学版). 2025(01): 79-87 .
    2. 罗跃春,甘展孜,曾新雄,王宁伟. 珠江口西岸滨海区软土属性分析. 土工基础. 2024(02): 239-242 .
    3. 宋许根. 广州南沙某深厚软土区综合管廊基坑变形破坏分析. 岩石力学与工程学报. 2023(S1): 3629-3642 .
    4. 蔡子勇,乔世范,檀俊坤,刘屹颀. 南沙港区深厚淤泥软土特性及空间异性研究. 地下空间与工程学报. 2023(03): 897-910 .
    5. 李天降,朱孟君,王哲,宋许根,甄洁,衣凡,雷华阳,郑刚,程雪松. 软土区管廊基坑柔性支护下基坑变形控制标准. 科学技术与工程. 2023(21): 9199-9206 .
    6. 田琦,陈国垚,王伟,史宗刚,刘红位. 福建沿海原状软土力学特性试验研究. 水利与建筑工程学报. 2023(05): 78-84 .
    7. 裘友强,张留俊,富志鹏,刘军勇,张微,王超. 内陆河湖相软土土性指标统计特征与竖向变化规律研究. 水利水电技术(中英文). 2023(12): 23-34 .
    8. 刘彬,徐苏静,张四俊,惠海鹏,居俊. 沿海地区深厚软土工程力学特性分析. 江苏建筑. 2022(03): 101-104 .
    9. 罗维高,林惠庭,章志,卢荣富,施雨,周晓敏. 大直径超长距离钢顶管施工技术应用分析. 广东土木与建筑. 2022(08): 71-75 .
    10. 李治斌,党星海,蔡明祥,赵健赟,郁林,李先怡. 基于PSInSAR技术的珠海市地表沉降监测与归因分析. 自然灾害学报. 2021(01): 38-46 .
    11. 戴巍,陈智超,冯青山,麦凌威,祝敏刚. 木质纤维与水泥共同改良软土的力学性能与微观机制分析. 水力发电. 2021(03): 121-125 .
    12. 陆惠平,朱挻,刘泽,何矾,李洪. 绍兴淤泥质软土工程特性. 建筑技术开发. 2021(15): 155-157 .
    13. 刘维正,葛孟源,李天雄. 南沙海相软土工程特性原位测试对比与统计规律分析. 岩土工程学报. 2021(S2): 267-275 . 本站查看

    Other cited types(9)

Catalog

    Article views (25) PDF downloads (13) Cited by(22)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return