YANG Zhihao, CHENG Shi'ao, YUE Zurun, FENG Huaiping, ZHAO Dejie, MA Deliang, LI Tonghai. Multifactorial influence patterns and resistance mechanisms of frost-jacking characteristics in conical piles[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(7): 1382-1391. DOI: 10.11779/CJGE20240657
    Citation: YANG Zhihao, CHENG Shi'ao, YUE Zurun, FENG Huaiping, ZHAO Dejie, MA Deliang, LI Tonghai. Multifactorial influence patterns and resistance mechanisms of frost-jacking characteristics in conical piles[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(7): 1382-1391. DOI: 10.11779/CJGE20240657

    Multifactorial influence patterns and resistance mechanisms of frost-jacking characteristics in conical piles

    Funds: 

    the National Natural Science Foundation of China 52302518

    the Natural Science Foundation of Hebei Provence E2023210054

    the Shijiazhuang City Outstanding Youth Project for Basic Research in Hebei Province Universities 241790557A

    the Science and Technology Project of Hebei Education Department CXZX2025005

    More Information
    • Received Date: July 07, 2024
    • Revised Date: February 17, 2025
    • Accepted Date: February 24, 2025
    • Available Online: February 24, 2025
    • Published Date: February 25, 2025
    • To investigate their evolution characteristics of frost-jacking behavior and their resistance mechanisms, a testing device for the anti-frost-jacking performance of conical piles is developed. The unidirectional freezing tests on the conical piles are conducted to analyze the effects of pile materials, cone angles, soil moisture contents around the piles and freeze-thaw cycles on their frost-jacking performance as well as their anti-frost-jacking mechanisms. It is indicated that under the same conditions, the frost-jacking displacement of the piles decreases exponentially with the increase in the cone angles. As the number of freeze-thaw cycles increases, the growth rate of the frost-jacking displacement for vertical piles increases in a semi-logarithmic manner, while changes in the conical piles are not significant. The pile materials have a significant impact on the frost-jacking characteristics of the conical piles, and the wooden pile may experience thawing extraction. During the unidirectional freezing process, the moisture within the soil surrounding the piles migrates upward from the bottom. The greater the initial moisture contents, the more pronounced the migration, leading to larger frost-jacking displacements. However, the effects of the moisture contents on the frost-jacking displacement are weaker than those of the cone angles. During the freezing process of the soil around the piles, the freezing depth increases, the tangential frost-jacking force on the pile surface increases, and the normal frost jacking force gradually decreases from compressive stress to tensile one. When these two forces exceed the tangential freezing strength of the soil and the ultimate normal tensile strength, the frost-jacking of the piles occurs. Considering the resistance to frost jacking, economic factors and the protection of frozen soil, the cone angles of the anti-frost-jacking conical piles should be designed to be between 7° and 9°, but the pile depth must also be taken into account.
    • [1]
      许健, 袁俊, 管顺清, 等. 多年冻土区锥柱基础抗拔承载性能试验研究[J]. 西安建筑科技大学学报(自然科学版), 2017, 49(1): 70-75.

      XU Jian, YUAN Jun, GUAN Shunqing, et al. Experimental studies on the uplift bearing capacity of cone-cylindrical foundation in permafrost area[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2017, 49(1): 70-75. (in Chinese)
      [2]
      史向阳, 张泽, 李东庆, 等. 冻融循环作用下锥柱式桩基础水热及变形动态变化规律研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 3092-3101.

      SHI Xiangyang, ZHANG Ze, LI Dongqing, et al. Study on dynamic change law of hydrothermal and deformation of cone-column pile foundation under freeze-thaw cycle[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 3092-3101. (in Chinese)
      [3]
      周亚龙, 王旭, 蒋代军, 等. 青藏铁路接触网异型桩基抗冻拔模型试验研究[J]. 西南交通大学学报, 2024, 59(3): 677-684.

      ZHOU Yalong, WANG Xu, JIANG Daijun, et al. Experimental of anti-frost jacking model of grotesque pile foundations of overhead contact system mast of Qinghai-Xizang railway[J]. Journal of Southwest Jiaotong University, 2024, 59(3): 677-684. (in Chinese)
      [4]
      熊维林, 葛洪林, 富海鹰. 考虑非对称冻结的塔杆基础模型实验研究[J]. 铁道科学与工程学报, 2022, 19(4): 931-940.

      XIONG Weilin, GE Honglin, FU Haiying. Model test study on tower foundation considering asymmetric freezing[J]. Journal of Railway Science and Engineering, 2022, 19(4): 931-940. (in Chinese)
      [5]
      ZHOU Y L, WANG X, NIU F J, et al. Frost jacking characteristics of transmission tower pile foundations with and without thermosyphons in permafrost regions of Qinghai–Tibet Plateau[J]. Journal of Cold Regions Engineering, 2021, 35(2): 04021004. doi: 10.1061/(ASCE)CR.1943-5495.0000246
      [6]
      SHUA Q Q, LIU K X, LI J K, et al. Time domain nonlinear dynamic analysis of vertically loaded tapered pile in layered soils[J]. Buildings, 2024, 14(2): 445. doi: 10.3390/buildings14020445
      [7]
      TRETIAKOVA O. Calculation of tangential frost heave stresses based on physical, mechanical and stress-strain behavior of frozen soil[J]. Architecture and Engineering, 2017, 2(3): 43-51. doi: 10.23968/2500-0055-2017-2-3-43-51
      [8]
      黄旭斌, 盛煜, 黄龙, 等. 季节冻土区扩底单桩受力性能研究进展与展望[J]. 冰川冻土, 2020, 42(4): 1220-1228.

      HUANG Xubin, SHENG Yu, HUANG Long, et al. Study of mechanical behaviors of pile foundation with enlarged end in seasonally frozen ground regions: progress and review[J]. Journal of Glaciology and Geocryology, 2020, 42(4): 1220-1228. (in Chinese)
      [9]
      王腾飞, 刘建坤, 邰博文, 等. 螺旋桩冻拔特性的模型试验研究[J]. 岩土工程学报, 2018, 40(6): 1084-1092. doi: 10.11779/CJGE201806014

      WANG Tengfei, LIU Jiankun, TAI Bowen, et al. Model tests on frost jacking behaviors of helical steel piles[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1084-1092. (in Chinese) doi: 10.11779/CJGE201806014
      [10]
      CHURKIN S V, NIKITIN A V, AKSENOV S E, et al. Deformation of building on pile foundation due to frost heave[J]. Japanese Geotechnical Society Special Publication, 2016, 2(39): 1420-1423.
      [11]
      温智, 俞祁浩, 张建明, 等. 青藏直流输变电工程基础冻结强度试验研究[J]. 岩土工程学报, 2013, 35(12): 2262-2267. https://cge.nhri.cn/article/id/15605

      WEN Zhi, YU Qihao, ZHANG Jianming, et al. Experimental study on adfreezing bond strength of interface between silt and foundation of Qinghai-Tibetan transmission line[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2262-2267. (in Chinese) https://cge.nhri.cn/article/id/15605
      [12]
      蒋代军, 王旭, 刘德仁, 等. 青藏铁路多年冻土地基输电塔热棒桩基稳定性试验研究[J]. 岩石力学与工程学报, 2014, 33(增刊2): 4258-4263.

      JIANG Daijun, WANG Xu, LIU Deren, et al. Experimental study on stability of hot rod pile foundation of transmission tower on permafrost foundation of Qinghai-Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 4258-4263. (in Chinese)
      [13]
      史向阳, 张泽, 李东庆, 等. 锥柱式桩基础明挖基坑回填土回冻过程模型试验研究[J]. 湖南大学学报(自然科学版), 2018, 45(7): 125-134.

      SHI Xiangyang, ZHANG Ze, LI Dongqing, et al. Model test study on refreezing process of backfill in cone-cylindrical pile foundation pit[J]. Journal of Hunan University (Natural Sciences), 2018, 45(7): 125-134. (in Chinese)
      [14]
      ORLOFF B O. Frost Heaving of Soil and Its Effect on Buildings[M]. Leningrad: Leningrad Construction Engineering Press, 1997.
      [15]
      铁路工程土工试验规程: TB 10102—2023[S]. 北京: 中国铁道出版社, 2023.

      Specification for Soil Test of Railway Engineering: TB 10102—2023[S]. Beijing: China Railway Publishing House, 2023. (in Chinese)
      [16]
      黄旭斌, 盛煜, 黄龙, 等. 单向冻结条件下扩底桩抗冻拔能力试验研究[J]. 工程科学与技术, 2021, 53(1): 122-131.

      HUANG Xubing, SHENG Yu, HUANG Long, et al. Experimental study on the anti-frost jacking ability of belled pile under unidirectional freezing condition[J]. Advanced Engineering Sciences, 2021, 53(1): 122-131. (in Chinese)
    • Cited by

      Periodical cited type(5)

      1. 黄华,刘瑞阳,刘笑笑,柳明亮. 黄土湿陷特性及其改性方法研究进展. 建筑科学与工程学报. 2024(02): 1-16 .
      2. 钟华,官宸慧,刘路路. 黄土基坑典型区域不同含水率土体强度与变形特性研究. 南京工业大学学报(自然科学版). 2024(02): 205-215 .
      3. 贾剑青,赵阳阳,贾超,辛成平,张帮鑫. 湿陷性黄土地基水泥土搅拌桩加固效果研究. 铁道工程学报. 2022(07): 18-24 .
      4. 金鑫,王铁行,郝延周,赵再昆,张亮,张猛. 桩间黄土卸荷湿陷过程中卸荷量计算方法初探. 岩土力学. 2022(09): 2399-2409 .
      5. 金鑫,王铁行,张玉,张猛. 计算黄土卸荷湿陷量的模量折减法研究. 岩石力学与工程学报. 2021(07): 1473-1483 .

      Other cited types(5)

    Catalog

      Article views (101) PDF downloads (41) Cited by(10)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return