• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
YANG Yansong, XIAO Yu, LI Dejian, CHENG Xiao, YU Qiangshan, YU Pengcheng. Reinforcement effects of optimal strategy of anti-slide piles on irregular slopes with bedding rock slopes under near-fault ground motions[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(7): 1516-1526. DOI: 10.11779/CJGE20240255
Citation: YANG Yansong, XIAO Yu, LI Dejian, CHENG Xiao, YU Qiangshan, YU Pengcheng. Reinforcement effects of optimal strategy of anti-slide piles on irregular slopes with bedding rock slopes under near-fault ground motions[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(7): 1516-1526. DOI: 10.11779/CJGE20240255

Reinforcement effects of optimal strategy of anti-slide piles on irregular slopes with bedding rock slopes under near-fault ground motions

Funds: 

the National Natural Science Foundation of China 52208369

the National Natural Science Foundation of China 52309138

the National Natural Science Foundation of China 52378370

the Sichuan Science and Technology Program 2023NSFSC0284

More Information
  • Received Date: March 20, 2024
  • Revised Date: September 24, 2024
  • Accepted Date: October 11, 2024
  • Available Online: October 11, 2024
  • Published Date: October 12, 2024
  • In practical engineering, the surfaces of bedding rock slopes are mostly irregular, and their geometrical concave and convex characteristics and joint characteristics have a significant effect on the slope stability, which leads to the problem of the optimal reinforcement strategy of using anti-slide piles to reinforce the slopes. This problem is more prominent under the near-fault pulse-like ground motions with short term and high energy. Based on this, the upper-bound limit analysis and Newmark permanent displacement method are used to establish an energy analysis model for slopes reinforced by anti-slide piles based on irregular slopes, and the accuracy of the calculated results of the improved method is verified by comparing the theoretical and numerical calculations of the destabilized areas of bedding rock slopes. The results show that: (1) The influences of geometric characteristics of slopes on their stability are more dependent on the magnitude of the partial slope angle βi, followed by the partial slope height ai. (2) The effects of βi on the slope stability become progressively larger with the increasing cohesion cr and the internal friction angle φr. The jointed surface angle has the greatest effects on the stability of the convex slope in the range of 10° to 25°. (3) The optimal reinforcement strategy of anti-slide piles are more sensitive under pulse-like ground motions than under non-pulse-like ones for irregular bedding rock slopes, and the optimal reinforcement strategy of the anti-slide pile for upward-convex and downward-concave bedding rock slope is in the upper middle (xp/xl=0.6~0.7). The optimal reinforcement strategy of the anti-slide piles for concave, convex, upward-concave and downward-convex bedding rock slopes are around in the middle (xp/xl=0.4~0.6). The research results may provide theoretical support and guidance for the optimal reinforcement strategy of the anti-slide piles for irregular bedding rock slopes under near-fault pulse-like ground motions in similar projects.
  • [1]
    SONG L F, YU X, XU B, et al. 3D slope reliability analysis based on the intelligent response surface methodology[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(2): 735-749. doi: 10.1007/s10064-020-01940-6
    [2]
    ZAN W B, ZHANG W J, WANG N, et al. Stability analysis of complex terrain slope based on multi-source point cloud fusion[J]. Journal of Mountain Science, 2022, 19(9): 2703-2714. doi: 10.1007/s11629-022-7307-8
    [3]
    CHENG X, LI D J, ZHAO L H, et al. Optimal stability analysis of homogenous soil slopes with an irregular geometric morphology[J]. Geomorphology, 2024, 446: 109005. doi: 10.1016/j.geomorph.2023.109005
    [4]
    GAO J. Identification of topographic settings conducive to landsliding from Dem in Nelson county, Virginia, U. S. A[J]. Earth Surface Processes and Landforms, 1993, 18(7): 579-591. doi: 10.1002/esp.3290180702
    [5]
    ZHANG Y B, XIANG C L, YU P C, et al. Investigation of permanent displacements of near-fault seismic slopes by a general sliding block model[J]. Landslides, 2022, 19(1): 187-197. doi: 10.1007/s10346-021-01736-z
    [6]
    李得建, 贾文韬, 程肖, 等. 阶梯状滑动断续节理顺层边坡稳定性分析[J]. 岩土工程学报, 2022, 44(11): 2125-2134. doi: 10.11779/CJGE202211019

    LI Dejian, JIA Wentao, CHENG Xiao, et al. Stability of stepped sliding of bedding rock slopes with discontinuous joints[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2125-2134. (in Chinese) doi: 10.11779/CJGE202211019
    [7]
    NEWMARK N M. Effects of earthquakes on dams and embankments[J]. Geotechnique, 1965, 15(2): 139-160. doi: 10.1680/geot.1965.15.2.139
    [8]
    UTILI S, ABD A H. On the stability of fissured slopes subject to seismic action[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(5): 785-806. doi: 10.1002/nag.2498
    [9]
    ITO T, MATSUI T. Methods to estimate lateral force acting on stabilizing piles[J]. Soils and Foundations, 1975, 15(4): 43-59. doi: 10.3208/sandf1972.15.4_43
    [10]
    LI X P, HE S M, WU Y. Seismic displacement of slopes reinforced with piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(6): 880-884. doi: 10.1061/(ASCE)GT.1943-5606.0000296
    [11]
    徐爱民, 柳群义, 朱自强, 等. 层状岩体边坡抗滑桩加固效应的数值分析[J]. 中南大学学报(自然科学版), 2011, 42(8): 2453-2458.

    XU Aimin, LIU Qunyi, ZHU Ziqiang, et al. Numerical analysis for reinforcement response of pile in stratified rock slope[J]. Journal of Central South University (Science and Technology), 2011, 42(8): 2453-2458. (in Chinese)
    [12]
    SHOOSHPASHA I, AMIRDEHI H A. Evaluating the stability of slope reinforced with one row of free head piles[J]. Arabian Journal of Geosciences, 2015, 8(4): 2131-2141. doi: 10.1007/s12517-014-1272-7
    [13]
    PRASSETYO S H, GUTIERREZ M, BARTON N. Nonlinear shear behavior of rock joints using a linearized implementation of the Barton–Bandis model[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(4): 671-682. doi: 10.1016/j.jrmge.2017.01.006
    [14]
    赖柳军. 抗滑桩加固岩质边坡稳定性影响分析[J]. 西部交通科技, 2022(9): 57-60.

    LAI Liujun. Analysis of the influence of anti-slide pile reinforcement on the stability of rock slopes [J]. Western China Communications Science & Technology, 2022(9): 57-60. (in Chinese)
  • Cited by

    Periodical cited type(11)

    1. 刘浩锋,孟令奎,罗志,李靖霖,张镇,李涵曼,李林宜,张文. 面向内陆峡谷型水库的GACOS时序InSAR大气二次改正方法研究. 华北水利水电大学学报(自然科学版). 2025(02): 13-22 .
    2. 罗康权. 坝基固结灌浆施工技术研究. 广东建材. 2024(04): 119-121 .
    3. 何欣,魏匡民,屈洁. 峡谷区深厚覆盖层上面板堆石坝结构安全研究. 西北水电. 2024(02): 82-88 .
    4. 李麒,王维浩,熊堃. 石台抽水蓄能电站下水库混凝土面板堆石坝设计. 人民长江. 2024(S2): 155-160 .
    5. 南进江,林海峰,唐政,韩冬冬. 大面积深层地基加固渗透系数试验研究. 公路. 2023(06): 65-74 .
    6. 吴奇峰. 均质土石坝稳定性分析及加固方案研究. 陕西水利. 2023(07): 137-140 .
    7. 熊启文. 混凝土面板堆石坝主、副堆石料碾压试验研究. 云南水力发电. 2023(10): 314-318 .
    8. 李焕容,时晓晨,段崇宝,董洪涛,余冬冬,郭志强. 高压旋喷桩与三轴搅拌桩组合加固杂填土地基监测数据分析. 施工技术(中英文). 2022(01): 54-57 .
    9. 潘英杰. 北坑水库面板堆石坝坝基覆盖层及全风化岩体利用研究. 水利水电技术(中英文). 2022(S1): 442-447 .
    10. 周勇,李鑫,田春,谭刚,杨严. 固结灌浆及高压旋喷桩地基软基处理施工关键技术浅析. 四川建筑. 2022(S1): 38-41 .
    11. 陈谋建,杨燮罡. 面板堆石坝砂卵石软基处理与坝料碾压试验研究. 黑龙江水利科技. 2022(10): 34-37 .

    Other cited types(2)

Catalog

    Article views (177) PDF downloads (40) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return