Citation: | ZHANG Wenjie, LI Xibin, HUANG Jinxiang. Remediation of As(Ⅲ)-contaminated soils using Fe-Mn oxides-modified biochar[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1327-1333. DOI: 10.11779/CJGE20240209 |
[1] |
ZHOU S J, DU Y J, SUN H Y, et al. Evaluation of the effectiveness of ex-situ stabilization for arsenic and antimony contaminated soil: short-term and long-term leaching characteristics[J]. The Science of the Total Environment, 2022, 848: 157646. doi: 10.1016/j.scitotenv.2022.157646
|
[2] |
LIU X M, SONG Q J, TANG Y, et al. Human health risk assessment of heavy metals in soil-vegetable system: a multi-medium analysis[J]. The Science of the Total Environment, 2013, 463/464: 530-540. doi: 10.1016/j.scitotenv.2013.06.064
|
[3] |
周实际, 杜延军, 倪浩, 等. 压实度对铁盐稳定化砷、锑污染土特性的影响及机制研究[J]. 岩土力学, 2022, 43(2): 432-442.
ZHOU Shiji, DU Yanjun, NI Hao, et al. Mechanisms analysis of the effect of compaction degree on the properties of arsenic and antimony co-contaminated soil stabilized by ferric salts[J]. Rock and Soil Mechanics, 2022, 43(2): 432-442. (in Chinese)
|
[4] |
张文杰, 余海生, 蒋墨翰. 预氧化-稳定化-固化联合修复As(Ⅲ)污染土[J]. 岩土工程学报, 2023, 45(6): 1231-1239. doi: 10.11779/CJGE20220279
ZHANG Wenjie, YU Haisheng, JIANG Mohan. Combined remediation of As(Ⅲ)-contaminated soils by pre-oxidation, stabilization and solidification[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1231-1239. (in Chinese) doi: 10.11779/CJGE20220279
|
[5] |
CUNDY A B, HOPKINSON L, WHITBY R L D. Use of iron-based technologies in contaminated land and groundwater remediation: a review[J]. The Science of the Total Environment, 2008, 400(1/2/3): 42-51.
|
[6] |
赵慧敏. 铁盐—生石灰对砷污染土壤固定/稳定化处理技术研究[D]. 北京: 中国地质大学(北京), 2010.
ZHAO Huimin. Study on Fixation/Stabilization Technology of Arsenic Contaminated Soil by Iron Salt-Quicklime[D]. Beijing: China University of Geosciences, 2010. (in Chinese)
|
[7] |
XENIDIS A, STOURAITI C, PAPASSIOPI N. Stabilization of Pb and As in soils by applying combined treatment with phosphates and ferrous iron[J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 929-937.
|
[8] |
WU D L, ZONG Y, TIAN Z Y, et al. Role of reactive oxygen species in As(Ⅲ) oxidation by carbonate structural Fe(Ⅱ): a surface-mediated pathway[J]. Chemical Engineering Journal, 2019, 368: 980-987. doi: 10.1016/j.cej.2019.02.204
|
[9] |
CHOPPALA G, BOLAN N, KUNHIKRISHNAN A, et al. Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate[J]. Chemosphere, 2016, 144: 374-381. doi: 10.1016/j.chemosphere.2015.08.043
|
[10] |
ZHANG G S, LIU H J, QU J H, et al. Arsenate uptake and arsenite simultaneous sorption and oxidation by Fe-Mn binary oxides: influence of Mn/Fe ratio, pH, Ca2+, and humic acid[J]. Journal of Colloid and Interface Science, 2012, 366(1): 141-146. doi: 10.1016/j.jcis.2011.09.058
|
[11] |
ZHOU Q W, LIAO B H, LIN L N, et al. Adsorption of Cu(Ⅱ) and Cd(Ⅱ) from aqueous solutions by ferromanganese binary oxide-biochar composites[J]. The Science of the Total Environment, 2018, 615: 115-122. doi: 10.1016/j.scitotenv.2017.09.220
|
[12] |
CAO X D, MA L N, LIANG Y, et al. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar[J]. Environmental Science & Technology, 2011, 45(11): 4884-4889.
|
[13] |
MOHAN D, JR PITTMAN C U. Arsenic removal from water/wastewater using adsorbents: a critical review[J]. Journal of Hazardous Materials, 2007, 142(1/2): 1-53.
|
[14] |
HERATH I, ZHAO F J, BUNDSCHUH J, et al. Microbe mediated immobilization of arsenic in the rice rhizosphere after incorporation of silica impregnated biochar composites[J]. Journal of Hazardous Materials, 2020, 398: 123096. doi: 10.1016/j.jhazmat.2020.123096
|
[15] |
LI L F, ZHU C X, LIU X S, et al. Biochar amendment immobilizes arsenic in farmland and reduces its bioavailability[J]. Environmental Science and Pollution Research International, 2018, 25(34): 34091-34102. doi: 10.1007/s11356-018-3021-z
|
[16] |
YU Z H, QIU W W, WANG F, et al. Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L) cultivar[J]. Chemosphere, 2017, 168: 341-349. doi: 10.1016/j.chemosphere.2016.10.069
|
[17] |
WANG L W, OK Y S, TSANG D C W, et al. New trends in biochar pyrolysis and modification strategies: feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment[J]. Soil Use and Management, 2020, 36(3): 358-386. doi: 10.1111/sum.12592
|
[18] |
FRESNO T, MORENO-JIMÉNEZ E, PEÑALOSA J M. Assessing the combination of iron sulfate and organic materials as amendment for an arsenic and copper contaminated soil, a chemical and ecotoxicological approach[J]. Chemosphere, 2016, 165: 539-546. doi: 10.1016/j.chemosphere.2016.09.039
|
[19] |
TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. doi: 10.1021/ac50043a017
|
[20] |
LI J S, BEIYUAN J Z, TSANG D C W, et al. Arsenic-containing soil from geogenic source in Hong Kong: leaching characteristics and stabilization/solidification[J]. Chemosphere, 2017, 182: 31-39. doi: 10.1016/j.chemosphere.2017.05.019
|
[21] |
WANG Y, GU K, WANG H S, et al. Remediation of heavy-metal-contaminated soils by biochar: a review[J]. Environmental Geotechnics, 2022, 9(3): 135-148.
|
[22] |
DU Y J, WEI M L, REDDY K R, et al. New phosphate-based binder for stabilization of soils contaminated with heavy metals: leaching, strength and microstructure characterization[J]. Journal of Environmental Management, 2014, 146: 179-188. doi: 10.1016/j.jenvman.2014.07.035
|
[23] |
FAN J, CHEN X, XU Z B, et al. One-pot synthesis of nZVI-embedded biochar for remediation of two mining arsenic-contaminated soils: arsenic immobilization associated with iron transformation[J]. Journal of Hazardous Materials, 2020, 398: 122901. doi: 10.1016/j.jhazmat.2020.122901
|
[24] |
LI J S, XUE Q, FANG L, et al. Characteristics and metal leachability of incinerated sewage sludge ash and air pollution control residues from Hong Kong evaluated by different methods[J]. Waste Management, 2017, 64: 161-170. doi: 10.1016/j.wasman.2017.03.033
|
[25] |
FREITAS E T F, MONTORO L A, GASPARON M, et al. Natural attenuation of arsenic in the environment by immobilization in nanostructured hematite[J]. Chemosphere, 2015, 138: 340-347. doi: 10.1016/j.chemosphere.2015.05.101
|
[26] |
TU Y L, ZHAO D Y, GONG Y Y, et al. Field demonstration of on-site immobilization of arsenic and lead in soil using a ternary amending agent[J]. Journal of Hazardous Materials, 2022, 426: 127791. doi: 10.1016/j.jhazmat.2021.127791
|