Citation: | LU Dechun, SHI Anyu, ZHOU Xin, DU Xiuli. An unconstrained stress update algorithm based on hyper-dual step derivative approximation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1113-1122. DOI: 10.11779/CJGE20240138 |
[1] |
BORJA R I, LEE S R. Cam-clay plasticity, part 1: implicit integration of elasto-plastic constitutive relations[J]. Computer Methods in Applied Mechanics and Engineering, 1990, 78(1): 49-72. doi: 10.1016/0045-7825(90)90152-C
|
[2] |
BORJA R I. Cam-clay plasticity, part Ⅱ: implicit integration of constitutive equation based on a nonlinear elastic stress predictor[J]. Computer Methods in Applied Mechanics and Engineering, 1991, 88(2): 225-240. doi: 10.1016/0045-7825(91)90256-6
|
[3] |
贾善坡, 陈卫忠, 杨建平, 等. 基于修正Mohr-Coulomb准则的弹塑性本构模型及其数值实施[J]. 岩土力学, 2010, 31(7): 2051-2058.
JIA Shanpo, CHEN Weizhong, YANG Jianping, et al. An elastoplastic constitutive model based on modified Mohr-Coulomb criterion and its numerical implementation[J]. Rock and Soil Mechanics, 2010, 31(7): 2051-2058. (in Chinese)
|
[4] |
ZHAO J D, SHENG D C, ROUAINIA M, et al. Explicit stress integration of complex soil models[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29(12): 1209-1229. doi: 10.1002/nag.456
|
[5] |
HONG H K, LIU C S. Internal symmetry in the constitutive model of perfect elastoplasticity[J]. International Journal of Non-Linear Mechanics, 2000, 35(3): 447-466. doi: 10.1016/S0020-7462(99)00030-X
|
[6] |
REZAIEE-PAJAND M, NASIRAI C. On the integration schemes for Drucker-Prager's elastoplastic models based on exponential maps[J]. International Journal for Numerical Methods in Engineering, 2008, 74(5): 799-826. doi: 10.1002/nme.2178
|
[7] |
SLOAN S W, ABBO A J, SHENG D C. Refined explicit integration of elastoplastic models with automatic error control[J]. Engineering Computations, 2001, 18(1/2): 121-194. doi: 10.1108/02644400110365842
|
[8] |
SIMO J C, TAYLOR R L. A return mapping algorithm for plane stress elastoplasticity[J]. International Journal for Numerical Methods in Engineering, 1986, 22(3): 649-670. doi: 10.1002/nme.1620220310
|
[9] |
MIRA P, TONNI L, PASTOR M, et al. A generalized midpoint algorithm for the integration of a generalized plasticity model for sands[J]. International Journal for Numerical Methods in Engineering, 2009, 77(9): 1201-1223. doi: 10.1002/nme.2445
|
[10] |
SCALET G, AURICCHIO F. Computational methods for elastoplasticity: an overview of conventional and less-conventional approaches[J]. Archives of Computational Methods in Engineering, 2018, 25(3): 545-589. doi: 10.1007/s11831-016-9208-x
|
[11] |
SIMO J C, HUGHES T J R. Computational Inelasticity[M]. New York: Springer Verlag, 1998.
|
[12] |
范庆来, 栾茂田, 杨庆. 修正剑桥模型的隐式积分算法在ABAQUS中的数值实施[J]. 岩土力学, 2008, 29(1): 269-273.
FAN Qinglai, LUAN Maotian, YANG Qing. Numerical implementation of implicit integration algorithm for modified Cam-clay model in ABAQUS[J]. Rock and Soil Mechanics, 2008, 29(1): 269-273. (in Chinese)
|
[13] |
ARMERO F, PÉREZ-FOGUET A. On the formulation of closest-point projection algorithms in elastoplasticity: Part I The variational structure[J]. International Journal for Numerical Methods in Engineering, 2002, 53(2): 297-329. doi: 10.1002/nme.278
|
[14] |
STARMAN B, HALILOVIČ M, VRH M, et al. Consistent tangent operator for cutting-plane algorithm of elasto-plasticity[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 272: 214-232. doi: 10.1016/j.cma.2013.12.012
|
[15] |
陈洲泉, 陈湘生, 庞小朝, 等. 角点型非共轴模型的半隐式应力积分算法及应用[J]. 岩土工程学报, 2023, 45(3): 521-529. doi: 10.11779/CJGE20220050
CHEN Zhouquan, CHEN Xiangsheng, PANG Xiaochao, et al. Semi-implicit integration algorithm for non-coaxial model based on vertex theory and its application[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 521-529. (in Chinese) doi: 10.11779/CJGE20220050
|
[16] |
KRABBENHOFT K, LYAMIN A V. Computational cam clay plasticity using second-order cone programming[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 209/210/211/212: 239-249.
|
[17] |
ZHOU X, LU D C, SU C C, et al. An unconstrained stress updating algorithm with the line search method for elastoplastic soil models[J]. Computers and Geotechnics, 2022, 143: 104592. doi: 10.1016/j.compgeo.2021.104592
|
[18] |
PEREZ F A. Numerical differentiation for local and global tangent operators in computational plasticity[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 189(1): 277-296. doi: 10.1016/S0045-7825(99)00296-0
|
[19] |
CHOI H, YOON J W. Stress integration-based on finite difference method and its application for anisotropic plasticity and distortional hardening under associated and non-associated flow rules[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 345: 123-160. doi: 10.1016/j.cma.2018.10.031
|
[20] |
SU C C, LU D C, ZHOU X, et al. An implicit stress update algorithm for the plastic nonlocal damage model of concrete[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 414: 116189. doi: 10.1016/j.cma.2023.116189
|
[21] |
ZHANG N, LI X, WANG D. Smoothed classic yield function for C2 continuities in tensile cutoff, compressive cap, and deviatoric sections[J]. International Journal of Geomechanics, 2021, 21(3): 4021005. doi: 10.1061/(ASCE)GM.1943-5622.0001910
|
[22] |
MENETREY P, WILLAM K J. Triaxial failure criterion for concrete and its generalization[J]. ACI Structural Journal, 1995, 92(3): 311-318.
|
[23] |
FIKE J A. Multi-Objective Optimization Using Hyper-Dual Numbers[D]. Palo Alto: Stanford University, 2013.
|
[24] |
ZHOU X, SHI A Y, LU D C, et al. A return mapping algorithm based on the hyper dual step derivative approximation for elastoplastic models[J]. Computer Methods in Applied Mechanics and Engineering. 2023, 417: 116418. doi: 10.1016/j.cma.2023.116418
|
1. |
王敬奎,乔丽苹,王菲,王者超,李崴. 海岛地下水封石油洞库海水入侵防控. 山东大学学报(工学版). 2025(02): 134-142 .
![]() |