• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHAO Meng, NIU Xinqiang, YAN Tianyou, XIAO Ming. Inverse analysis method for in-situ stress field of rock mass considering influences of characteristics of layered structure[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1239-1248. DOI: 10.11779/CJGE20240135
Citation: ZHAO Meng, NIU Xinqiang, YAN Tianyou, XIAO Ming. Inverse analysis method for in-situ stress field of rock mass considering influences of characteristics of layered structure[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1239-1248. DOI: 10.11779/CJGE20240135

Inverse analysis method for in-situ stress field of rock mass considering influences of characteristics of layered structure

More Information
  • Received Date: February 18, 2024
  • Available Online: September 24, 2024
  • The layered rock mass and its interlayer shearing fracture zone have complex influences on the magnitude and direction of local stress field in underground engineering areas. Obtaining the initial in-situ stress field under complex geological conditions is the prerequisite for analyzing the stability of surrounding rock of underground caverns in layered rock mass. Firstly, aiming at the influences of evolution process, topography and tectonic action of a complex valley, a lateral pressure coefficient method based on the stratum denudation simulation is proposed for the first-stage inversion and the initial ground stress field of big model is obtained. Secondly, based on the influences of layered rock mass on local stress field, a second-stage inverse model for layered rock mass is established. The equivalent tectonic loads are obtained by the stress field calculated by interpolation from the big model, and the second-stage inverse analysis method based on the equivalent tectonic loads is proposed. Combined with the first and the second inverse methods, the optimal inverse analysis method for the three-dimensional initial in-situ stress field of layered rock mass is formed. Finally, the in-situ stress field of underground cavern of Guiyang pumped storage hydroelectric plant is inverted on account of the measured in-situ stress data. The secondary inverse results indicate that the inverse values of the in-situ stress field can meet the requirements of point coincidence at the measuring points and field coincidence reflecting the evolution process of the valley and influences of the layered rock mass. The local stress field in underground engineering areas is significantly affected by the interlayer shearing fracture zone, which is mainly manifested in the following aspects: (1) The local stress value increases slightly near the interface and releases in the soft rock layer. (2) The direction of the local stress field deflects differently due to change of the occurrence of rock strata. Using the proposed method, the influences of anisotropic mechanical properties of layered rock mass on the magnitude, direction and disturbance range of local in-situ stress field are deeply analyzed.
  • [1]
    梅松华. 层状岩体开挖变形机制及破坏机理研究[D]. 武汉: 中国科学院研究生院(武汉岩土力学研究所), 2008.

    MEI Songhua. Study on Deformation Mechanism and Failure Mechanism of Layered Rock Mass Excavation[D]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, 2008. (in Chinese)
    [2]
    刘中春, 吕心瑞, 李玉坤, 等. 断层对地应力场方向的影响机理[J]. 石油与天然气地质, 2016, 37(3): 387-393.

    LIU Zhongchun, LÜ Xinrui, LI Yukun, et al. Mechanism of faults acting on in situ stress field direction[J]. Oil & Gas Geology, 2016, 37(3): 387-393. (in Chinese)
    [3]
    孙礼健, 朱元清, 杨光亮, 等. 断层端部及附近地应力场的数值模拟[J]. 大地测量与地球动力学, 2009, 29(2): 7-12.

    SUN Lijian, ZHU Yuanqing, YANG Guangliang, et al. Numerical simulation of ground stress field at ends and vicinity of a fault[J]. Journal of Geodesy and Geodynamics, 2009, 29(2): 7-12. (in Chinese)
    [4]
    LI K, WANG Y Y, HUANG X C. DDM regression analysis of the in situ stress field in a non-linear fault zone[J]. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(7): 567-573. doi: 10.1007/s12613-012-0597-z
    [5]
    张勇慧, 魏倩, 盛谦, 等. 大岗山水电站地下厂房区三维地应力场反演分析[J]. 岩土力学, 2011, 32(5): 1523-1530. doi: 10.3969/j.issn.1000-7598.2011.05.037

    ZHANG Yonghui, WEI Qian, SHENG Qian, et al. Three dimensional back analysis of geostress field in underground powerhouse zone of Dagangshan hydropower station[J]. Rock and Soil Mechanics, 2011, 32(5): 1523-1530. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.05.037
    [6]
    余大军, 杨张杰, 郭运华, 等. 基于FLAC3D横观各向同性模型的煤矿井田初始地应力场反演方法[J]. 煤炭学报, 2020, 45(10): 3427-3434.

    YU Dajun, YANG Zhangjie, GUO Yunhua, et al. Inversion method of initial geostress in coal mine field based on FLAC3D transverse isotropic model[J]. Journal of China Coal Society, 2020, 45(10): 3427-3434. (in Chinese)
    [7]
    赵辰, 肖明, 陈俊涛. 复杂地质条件下初始地应力场反演分析方法[J]. 华中科技大学学报(自然科学版), 2017, 45(8): 87-92.

    ZHAO Chen, XIAO Ming, CHEN Juntao. Inversion analysis method for in situ stress field under complex geological conditions[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(8): 87-92. (in Chinese)
    [8]
    张志增. 横观各向同性岩体位移反分析的理论与应用研究[D]. 北京: 清华大学, 2010.

    ZHANG Zhizeng. Study on Theory and Application of Displacement Back Analysis of Transversely Isotropic Rock Mass[D]. Beijing: Tsinghua University, 2010. (in Chinese)
    [9]
    颜天佑, 崔臻, 张勇慧, 等. 跨活动断裂隧洞工程赋存区域地应力场分布特征研究[J]. 岩土力学, 2018, 39(增刊1): 378-386.

    YAN Tian-you, CUI Zhen, ZHANG Yong-hui, et al. Study of distribution characteristics of in-situ stress field in occurrence area of crossing active fault tunnel engineering[J]. Rock and Soil Mechanics, 2018, 39(S1): 378-386. (in Chinese)
    [10]
    陈世杰, 肖明, 陈俊涛, 等. 断层对地应力场方向的扰动规律及反演分析方法[J]. 岩石力学与工程学报, 2020, 39(7): 1434-1444.

    CHEN Shijie, XIAO Ming, CHEN Juntao, et al. Disturbance law of faults to in situ stress field directions and its inversion analysis method[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(7): 1434-1444. (in Chinese)
    [11]
    裴启涛, 李海波, 刘亚群, 等. 复杂地质条件下坝区初始地应力场二次反演分析[J]. 岩石力学与工程学报, 2014, 33(增刊1): 2779-2785.

    PEI Qitao, LI Haibo, LIU Yaqun, et al. Two-stage back analysis of initial geostress field of dam areas under complex geological conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 2779-2785. (in Chinese)
    [12]
    江权, 冯夏庭, 陈建林, 等. 锦屏二级水电站厂址区域三维地应力场非线性反演[J]. 岩土力学, 2008, 29(11): 3003-3010.

    JIANG Quan, FENG Xiating, CHEN Jianlin, et al. Nonlinear inversion of 3D initial geostress field in Jinping Ⅱ Hydropower Station Region[J]. Rock and Soil Mechanics, 2008, 29(11): 3003-3010. (in Chinese)
    [13]
    徐磊. 一种实现复杂初始地应力场精确平衡的通用方法[J]. 三峡大学学报(自然科学版), 2012, 34(3): 30-33.

    XU Lei. A general method for the accurate equilibrium of complex initial in-situ stress field[J]. Journal of China Three Gorges University (Natural Sciences), 2012, 34(3): 30-33. (in Chinese)
    [14]
    郭运华, 朱维申, 李新平, 等. 基于FLAC3D改进的初始地应力场回归方法[J]. 岩土工程学报, 2014, 36(5): 892-898. doi: 10.11779/CJGE201405012

    GUO Yunhua, ZHU Weishen, LI Xinping, et al. Improved regression method for initial geostress based on FLAC3D[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 892-898. (in Chinese) doi: 10.11779/CJGE201405012
    [15]
    秦卫星, 付成华, 汪卫明, 等. 基于子模型法的初始地应力场精细模拟研究[J]. 岩土工程学报, 2008, 30(6): 930-934. https://cge.nhri.cn/article/id/12894

    QIN Weixing, FU Chenghua, WANG Weiming, et al. Refined simulation of initial geostress field based on sub-model method[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 930-934. (in Chinese) https://cge.nhri.cn/article/id/12894
  • Cited by

    Periodical cited type(11)

    1. 蔺云宏,郝云龙,李明宇,田帅,常瑞成,刘新新. 基坑开挖引起下卧地铁盾构隧道变形的统计与预测方法研究. 河南科学. 2025(03): 337-346 .
    2. 张毅. 软弱地层下的基坑支护方案比选. 山西建筑. 2024(17): 97-100 .
    3. 王伟,邓松峰. 深厚软土区邻近地铁深基坑工程关键技术研究. 江苏建筑. 2024(05): 120-126 .
    4. 刘朝阳,蒋凯,梁禹. 基于Kerr地基模型的覆土荷载引起既有装配式地铁车站沉降分析. 现代隧道技术. 2024(05): 71-78 .
    5. 贺旭. 软弱地层基坑开挖支护方案比选研究. 铁道建筑技术. 2023(05): 100-104+125 .
    6. 张继新. 浅埋扩挖隧道变形处理技术分析. 交通世界. 2023(15): 138-140 .
    7. 邓彬,张磊,郑鹏鹏,陈保国,邹顺清. 深基坑开挖与内支撑调节对邻近沉井影响规律试验研究. 建筑科学与工程学报. 2023(05): 174-182 .
    8. 马少俊,王乔坎,苏凤阳,徐建章,郑伟,陈思源. 邻地铁盾构隧道超长基坑支护技术——以杭州大会展中心基坑工程为例. 建筑科学. 2022(05): 179-186 .
    9. 王丽萍. 水平间距对涉水隧道土体变形影响的模拟分析. 黑龙江水利科技. 2022(08): 74-76+108 .
    10. 冯文刚. 涉水隧道开挖对土体沉降影响分析. 黑龙江水利科技. 2022(08): 89-92 .
    11. 祖华. 城市地铁隧道开挖及变形控制的数值模拟研究. 山西建筑. 2022(21): 135-137 .

    Other cited types(2)

Catalog

    Article views (229) PDF downloads (54) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return