• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
ZHANG Zhongjie, LONG Lianbin, SHI Zhenhao, HUANG Maosong, LÜ Peilin, LU Kangming. Mechanical analysis and field measurement of large-section quasi-rectangular pipe jacking buried deeply in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1190-1198. DOI: 10.11779/CJGE20240128
Citation: ZHANG Zhongjie, LONG Lianbin, SHI Zhenhao, HUANG Maosong, LÜ Peilin, LU Kangming. Mechanical analysis and field measurement of large-section quasi-rectangular pipe jacking buried deeply in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1190-1198. DOI: 10.11779/CJGE20240128

Mechanical analysis and field measurement of large-section quasi-rectangular pipe jacking buried deeply in soft soils

More Information
  • Received Date: February 03, 2024
  • Available Online: September 26, 2024
  • Deeply buried large-section rectangular and quasi-rectangular pipe jackings are increasingly used in the construction of large-scale urban underground structures such as subway stations in soft soils. The water and earth pressures and internal force responses of the structures can play an important role in ensuring the long-term safety of urban underground space. However, the relevant researches are still limited. Based on the field measurements of Jing'an Temple Station Project of Shanghai Metro Line 14, the spatial distribution of water and earth pressure and structural responses of large-section rectangular pipe-jacking structure deeply buried in soft soils are investigated. Then, the influences of earth pressure theories and soil-structure interaction modes on the internal force responses of pipe-jacking structures are analyzed. The applicability of different design methods are evaluated. The main conclusions include: (1) The measured vertical earth pressures at the top of the structures are close to the theoretical values of soil column weight, and the bending moments of the structures calculated by using the above theoretical earth pressure are consistent with the field measurements, and thus suggesting that the soil arching effects at the top of the pipe jacking in this project may not be significant. (2) The bending moment of the quasi-rectangular pipe jacking shows a "butterfly-shaped" distribution, indicating that the deformation mode of the structures is vertically concave and transversely convex, while the transverse convexity of the waist can further result in horizontal ground reactions. (3) The horizontal soil reactions can have significant impacts on the internal force of the large-section rectangular pipe jacking structures. The existing design specifications for pipe-jacking structures mostly ignore this factor, which can lead to a remarkable overestimation of the structural bending moment (e.g., for the structures in the case study, and the computation error for the bending moment at the waist areas can be a factor of two).
  • [1]
    刘龙卫, 薛发亭, 刘常利. 三车道超大断面矩形顶管工程: 嘉兴市下穿南湖大道隧道[J]. 隧道建设(中英文), 2021, 41(9): 1612-1625, 后插1-后插14.

    LIU Longwei, XUE Fating, LIU Changli. Three-lane super-large section rectangular pipe-jacking tunnel underpassing Nanhu avenue in Jiaxing, China[J]. Tunnel Construction, 2021, 41(9): 1612-1625, Back inserts1-14. (in Chinese)
    [2]
    贾连辉. 超大断面矩形盾构顶管设计关键技术[J]. 隧道建设, 2014, 34(11): 1098-1106.

    JIA Lianhui. Key technologies for design of super-large rectangular pipe jacking machine[J]. Tunnel Construction, 2014, 34(11): 1098-1106. (in Chinese)
    [3]
    顶管工程设计标准: DG/TJ 08—2268—2019 J 14552—2019[S]. 上海: 同济大学出版社, 2019.

    Construction Design Code for Pipe Jacking: DG/TJ 08—2268—2019 J 14552—2019[S]. Shanghai: Tongji University Press, 2019. (in Chinese)
    [4]
    地基基础设计标准: DG/J 08—11—2018 J 11595—2018[S]. 上海: 同济大学出版社, 2019.

    Foundation Design Code: DG/J 08—11—2018 J 11595—2018[S]. Shanghai: Tongji University Press, 2019. (in Chinese)
    [5]
    矩形顶管工程技术规程: T/CECS 716—2020[S]. 北京: 中国建筑工业出版社, 2020.

    Technical Specification for Pipe Jacking Engineering with Rectangular Cross Section: T/CECS 716—2020[S]. Beijing, China Architecture & Building Press, 2020. (in Chinese)
    [6]
    杨仙, 张可能, 黎永索, 等. 深埋顶管顶力理论计算与实测分析[J]. 岩土力学, 2013, 34(3): 757-761.

    YANG Xian, ZHANG Keneng, LI Yongsuo, et al. Theoretical and experimental analyses of jacking force during deep-buried pipe jacking[J]. Rock and Soil Mechanics, 2013, 34(3): 757-761. (in Chinese)
    [7]
    林越翔, 彭立敏, 吴桂航, 等. 仿矩形顶管管壁摩阻力理论公式的探讨[J]. 现代隧道技术, 2017, 54(4): 180-185.

    LIN Yuexiang, PENG Limin, WU Guihang, et al. Discussion of a theoretical formula for the friction resistance of a pipe wall in quasi-rectangular pipe jacking[J]. Modern Tunnelling Technology, 2017, 54(4): 180-185. (in Chinese)
    [8]
    雷晗, 陈锦剑, 王建华, 等. 大直径砼顶管的管道受力特性分析[J]. 上海交通大学学报, 2011, 45(10): 1493-1497.

    LEI Han, CHEN Jinjian, WANG Jianhua, et al. Analysis on performance of large diameter concrete jacking pipe[J]. Journal of Shanghai Jiao Tong University, 2011, 45(10): 1493-1497. (in Chinese)
    [9]
    ZHEN L, CHEN J J, QIAO P Z, et al. Analysis and remedial treatment of a steel pipe-jacking accident in complex underground environment[J]. Engineering Structures, 2014, 59: 210-219. doi: 10.1016/j.engstruct.2013.10.025
    [10]
    柳献, 焦伯昌, 潘伟强, 等. 大断面钢结构顶管纵向力时变规律研究[J]. 岩土工程学报, 2022, 44(10): 1810-1816.

    LIU Xian, JIAO Bochang), PAN Weiqiang, et al. Temporal variation laws of longitudinal stress of pipe jacking with large- section steel structure[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1810-1816. (in Chinese)
    [11]
    刘红波, 张国栋, 潘伟强, 等. 超大类矩形断面复合顶管施工力学性能研究[J]. 天津大学学报(自然科学与工程技术版), 2023, 56(11): 1115-1124.

    LIU Hongbo, ZHANG Guodong, PAN Weiqiang, et al. Study on mechanical properties of composite pipe jacking with a super-large rectangular section during construction[J]. Journal of Tianjin University (Science and Technology), 2023, 56(11): 1115-1124. (in Chinese)
    [12]
    潘伟强, 焦伯昌, 柳献. 大断面类矩形钢顶管结构受力性能现场试验研究: 以上海轨道交通14号线静安寺站顶管车站工程为例[J]. 隧道建设(中英文), 2022(6): 975-983.

    PAN Weiqiang, JIAO Bochang, LIU Xian. Mechanical behaviors of quasi-rectangular steel pipe jacking structure with large cross-section: a case study of Jing'an temple pipe jacking station on Shanghai metro line 14[J]. Tunnel Construction, 2022(6): 975-983. (in Chinese)
    [13]
    林华国, 唐世栋. 上海地区软土层侧向基床反力系数规律性研究[J]. 岩土工程学报, 2004, 26(4): 495-499.

    LIN Huaguo, TANG Shidong. Study on the horizontal coefficient of subgrade reaction for soft soil layers in Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 495-499. (in Chinese)
    [14]
    邓婷, 黄茂松, 时振昊, 等. 软黏土深埋矩形顶管施工地层变形分析[J]. 土木工程学报, 2023, 56(增刊2): 157-162.

    DENG Ting, HUANG Maosong, SHI Zhenhao, et al. Ground deformation response induced by jacking process of deep rectangular tunnel in soft clay[J]. China Civil Engineering Journal, 2023, 56(S2): 157-162. (in Chinese)
    [15]
    吴列成, 黄德中, 邱龑. 大断面矩形顶管法地铁车站施工沉降控制技术实践: 以上海轨道交通14号线静安寺站工程为例[J]. 隧道建设(中英文), 2021, 41(9): 1585-1593.

    WU Liecheng, HUANG Dezhong, QIU Yan. Settlement control technology in metro station construction with large cross-section rectangular pipe jacking method: a case study of Jing'an temple station of line No. 14 of Shanghai metro[J]. Tunnel Construction, 2021, 41(9): 1585-1593. (in Chinese)
    [16]
    日本土木学会. 日本土木学会隧道标准规范(盾构篇)及解说[M]. 朱伟, 译. 北京: 中国建筑工业出版社, 2001.

    Japan Society of Civil Engineers. Japanese Standard for Shield Tunneling[M]. ZHU Wei, translator. Beijing: China Architecture & Building Press, 2001. (in Chinese)
    [17]
    王卫东, 王浩然, 徐中华. 基坑开挖数值分析中土体硬化模型参数的试验研究[J]. 岩土力学, 2012, 33(8): 2283-2290.

    WANG Weidong, WANG Haoran, XU Zhonghua. Experimental study of parameters of hardening soil model for numerical analysis of excavations of foundation pits[J]. Rock and Soil Mechanics, 2012, 33(8): 2283-2290. (in Chinese)
    [18]
    CHEN K H, PENG F L. An improved method to calculate the vertical earth pressure for deep shield tunnel in Shanghai soil layers[J]. Tunnelling and Underground Space Technology, 2018, 75: 43-66.
  • Cited by

    Periodical cited type(6)

    1. 窦林名,曹安业,杨耀,贺虎,杨垚鑫,白贤栖,顾倩悦,李松徽,付相超,顾颖诗,吴震,张帝. 巨厚覆岩矿震孕育破裂特征与应力触发机制. 煤田地质与勘探. 2024(10): 1-13 .
    2. 李新旺,温学君,代卫林,程立朝,孙利辉. 大埋深倾斜厚煤层下导水裂隙带发育高度的微震监测. 中国科技论文. 2023(05): 526-533 .
    3. 朱全海. 面向水坝变形与应力监测的混合模型构建研究. 中国新技术新产品. 2023(07): 122-124 .
    4. 刘开航,冯磊,云美厚,曹运兴,田林. 煤层顶板高地应力区对微震层析反演的影响. 煤田地质与勘探. 2023(07): 174-183 .
    5. 刘洋,陆菜平,王华,郭英,肖自义,夏磊,王超. 不规则煤柱变形破坏机理矩张量反演研究. 采矿与安全工程学报. 2023(06): 1201-1209 .
    6. 石峰,张达,吴亚飞,李坤,王平. 矿山开采过程地压活动综合评价分析. 有色金属(矿山部分). 2022(05): 31-36 .

    Other cited types(6)

Catalog

    Article views (243) PDF downloads (74) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return