• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
DENG Xianghui, HE Hailong, WANG Rui, ZHANG Xuan, ZHAO Bangxuan, DING Xiao. Optimization of inclination angle of locking anchor pipe during excavation of upper and middle steps of deeply buried soft rock tunnels[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1152-1161. DOI: 10.11779/CJGE20240120
Citation: DENG Xianghui, HE Hailong, WANG Rui, ZHANG Xuan, ZHAO Bangxuan, DING Xiao. Optimization of inclination angle of locking anchor pipe during excavation of upper and middle steps of deeply buried soft rock tunnels[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1152-1161. DOI: 10.11779/CJGE20240120

Optimization of inclination angle of locking anchor pipe during excavation of upper and middle steps of deeply buried soft rock tunnels

More Information
  • Received Date: February 01, 2024
  • Available Online: September 26, 2024
  • In the initial support of soft rock tunnels, the combined support of steel frame and locking foot anchor pipe is an effective and economical support measure to control the deformation of surrounding rock of the tunnels. Among them, the setting angle of the locking foot anchor pipe is an important parameter affecting its support effects. Based on the existing mechanical analytical model for steel frame + locking foot anchor pipe after excavation of the upper bench, the mechanical analytical model for steel frame + locking foot anchor pipe after excavation of upper and middle benches is derived by using the method of structural mechanics, so as to obtain the theoretical formula for the setting angle of the locking foot anchor pipe and the settlement of the steel frame vault after excavation of the upper and middle benches. At the same time, based on the measurement analysis of the vertical pressure of the surrounding rock, the relationship between the angle of the locking anchor pipe after the excavation of the upper and middle steps and the settlement of the steel frame vault is obtained, and the Zhonghe Tunnel is used as the engineering basis to determine the optimal angle of the locking anchor pipe after the excavation of the upper and middle steps. The results show that the settlement of the tunnel vault obtained by the established mechanical model for steel frame + lock foot anchor pipe after excavation of upper and middle steps is basically consistent with the measured value. According to the theoretical formula settlement of steel arch, the optimal setting angle of locking foot anchor pipe of step in the tunnel is 60 ° ~ 70 °. The research results can provide a theoretical basis for the optimization design of the dip angle of the locking foot anchor pipe in the step excavation of deeply buried tunnels.
  • [1]
    WANG F N, GUO Z B, QIAO X B, et al. Large deformation mechanism of thin-layered carbonaceous slate and energy coupling support technology of NPR anchor cable in Minxian Tunnel: a case study[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2021, 117: 104151. http://www.sciencedirect.com/science/article/pii/S0886779821003424
    [2]
    陈建勋, 刘伟伟, 陈丽俊, 等. 绿泥石片岩地层大跨度公路隧道大变形控制及合理支护形式现场试验[J]. 中国公路学报, 2020, 33(12): 212-223. doi: 10.3969/j.issn.1001-7372.2020.12.017

    CHEN Jianxun, LIU Weiwei, CHEN Lijun, et al. In-situ experimental study on large-deformation control and reasonable support forms for a large-span highway tunnel in chlorite schist[J]. China Journal of Highway and Transport, 2020, 33(12): 212-223. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.12.017
    [3]
    TIAN X X, SONG Z P, WANG H Z, et al. Evolution characteristics of the surrounding rock pressure and construction techniques: a case study from Taoshuping tunnel[J]. Tunnelling and Underground Space Technology, 2022, 125: 104522. doi: 10.1016/j.tust.2022.104522
    [4]
    李磊, 谭忠盛, 郭小龙, 等. 高地应力陡倾互层千枚岩地层隧道大变形研究[J]. 岩石力学与工程学报, 2017, 36(7): 1611-1622.

    LI Lei, TAN Zhongsheng, GUO Xiaolong, et al. Large deformation of tunnels in steep dip strata of interbedding phyllite under high geostresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(7): 1611-1622. (in Chinese)
    [5]
    DENG X H, WANG Y C, WANG R, et al. Analytical model for prediction of tunnel deformations in soft rocks considering the softening and expansion effects[J]. International Journal of Civil Engineering, 2023, 21(1): 101-117. doi: 10.1007/s40999-022-00760-x
    [6]
    李伟平. 公路隧道穿越软弱围岩的变形与控制方法[J]. 现代隧道技术, 2009, 46(2): 44-49. doi: 10.3969/j.issn.1009-6582.2009.02.006

    LI Weiping. Deformations and their control for highway tunnels traversing soft surrounding rocks[J]. Modern Tunnelling Technology, 2009, 46(2): 44-49. (in Chinese) doi: 10.3969/j.issn.1009-6582.2009.02.006
    [7]
    剧仲林. 锁脚锚杆控制隧道初期支护沉降的原理和应用[J]. 隧道建设(中英文), 2022, 42(增刊1): 28-39.

    JU Zhonglin. The principle and application of locking foot bolt to control the settlement of tunnel primary support[J]. Tunnel construction(Chinese and English), 2022, 42(S1): 28-39. (in Chinese)
    [8]
    伍毅敏, 吕康成, 徐岳. 软弱地基隧道锁脚钢管承载特性研究[J]. 岩土工程学报, 2009, 31(12): 1825-1832. doi: 10.3321/j.issn:1000-4548.2009.12.004

    WU Yimin, LÜ Kangcheng, XU Yue. Bearing behaviors of steel foot pipes for tunnels in soft foundation[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1825-1832. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.12.004
    [9]
    邓国华, 邵生俊, 陶虎, 等. 锁脚锚管对土质隧道围岩变形和支护内力的影响研究[J]. 土木工程学报, 2010, 43(1): 108-113.

    DENG Guohua, SHAO Shengjun, TAO Hu, et al. A study of the effects of locking tremies on the internal force of tunnel support and the deformation of surrounding soil[J]. China Civil Engineering Journal, 2010, 43(1): 108-113. (in Chinese)
    [10]
    罗彦斌, 陈建勋. 软弱围岩隧道锁脚锚杆受力特性及其力学计算模型[J]. 岩土工程学报, 2013, 35(8): 1519-1525. https://cge.nhri.cn/article/id/15261

    LUO Yanbin, CHEN Jianxun. Mechanical characteristics and mechanical calculation model of tunnel feet-lock bolt in weak surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1519-1525. (in Chinese) https://cge.nhri.cn/article/id/15261
    [11]
    陈丽俊, 张运良, 马震岳, 等. 软岩隧洞锁脚锚杆-钢拱架联合承载分析[J]. 岩石力学与工程学报, 2015, 34(1): 129-138.

    CHEN Lijun, ZHANG Yunliang, MA Zhenyue, et al. Joint bearing analysis for feet-lock bolt and steel arch in weak rock tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 129-138. (in Chinese)
    [12]
    石州, 罗彦斌, 陈建勋, 等. 软弱围岩隧道锁脚锚管力学特性现场模拟试验[J]. 公路交通科技, 2021, 17(7): 96-106, 123.

    SHI Zhou, LUO Yanbin, CHEN Jianxun, et al. Field simulation test on mechanical characteristics of feet-lock anchor pipes for soft surrounding rock tunnel[J]. Journal of Highway and Transportation Research and Development, 2021, 17(7): 96-106, 123. (in Chinese)
    [13]
    黄明琦. 锁脚锚杆作用机理及其在厦门翔安隧道中的应用研究[J]. 铁道建筑技术, 2009(7): 86-89, 141.

    HUANG Mingqi. Feet-lock bolt mechanism and its application inXiamen Xiang'an tunnel[J]. Railway Construction Technology, 2009(7): 86-89, 141. (in Chinese)
    [14]
    杨志刚, 肖伯强, 陈培帅, 等. 隧道三台阶开挖锁脚锚管倾角优化研究[J]. 人民长江, 2017, 48(16): 60-62, 72.

    YANG Zhigang, XIAO Boqiang, CHEN Peishuai, et al. Dip angle optimization of feet-lock bolt in tunnel constructed by three steps excavation[J]. Yangtze River, 2017, 48(16): 60-62, 72. (in Chinese)
    [15]
    史佩杰, 杨绍战, 杨硕, 等. 节理围岩台阶法隧道锁脚锚管支护参数研究[J]. 交通与运输, 2022, 38(3): 76-80.

    SHI Peijie, YANG Shaozhan, YANG Shuo, et al. Study on design parameters of feet-lock pipes for bench cut tunnels in jointed rocks[J]. Traffic & Transportation, 2022, 38(3): 76-80. (in Chinese)
    [16]
    陈丽俊, 张运良, 马震岳. 锁脚锚管合理打设角度的理论研究[J]. 岩石力学与工程学报, 2015, 34(7): 1334-1344.

    CHEN Lijun, ZHANG Yunliang, MA Zhenyue. Theoretical research on reasonable installation angle of feet-lock pipes[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(7): 1334-1344. (in Chinese)
    [17]
    喻海涛. 加筋喷砼拱肋-锁脚锚杆组合结构承载机制与支护效应研究[D]. 长沙: 长沙理工大学, 2016.

    YU Haitao. Study on Bearing Mechanism and Supporting Effect of Reinforced Shotcrete Arch Rib-Lock-Foot Anchor Composite Structure[D]. Changsha: Changsha University of Science & Technology, 2016. (in Chinese)
    [18]
    工程地质手册编委会. 工程地质手册[M]. 5版. 北京: 中国建筑工业出版社, 2018: 185-189.

    Editorial Board of Engineering Geology Manual. Engineering Geology Manual[M]. 5th ed. Beijing: China Building Industry Press, 2018: 185-189. (in Chinese)
    [19]
    叶万军, 吴云涛, 陈明, 等. 大断面古土壤隧道围岩压力分布规律及支护结构受力特征分析: 以银西高铁早胜3号隧道为例[J]. 隧道建设(中英文), 2019, 39(3): 355-361.

    YE Wanjun, WU Yuntao, CHEN Ming, et al. Surrounding rock pressure distribution law and supporting structure stress characteristics of large cross-section paleosol tunnel: a case study of Zaosheng No. 3 tunnel on Yinchuan-Xi'an high-speed railway[J]. Tunnel Construction, 2019, 39(3): 355-361. (in Chinese)
    [20]
    公路隧道设计规范: JTG D70—2004[S]. 北京: 人民交通出版社, 2018.

    Code for Design of Road Tunnel: JTG D70—2004[S]. Beijing: China Communications Press, 2018. (in Chinese)
    [21]
    陈丽俊. 隧道钢拱架拱脚沉降控制措施的承载特性研究[D]. 大连: 大连理工大学, 2016.

    CHEN Lijun. Study on Bearing Characteristics of Settlement Control Measures for Arch Foot of Tunnel Steel Arch Frame[D]. Dalian: Dalian University of Technology, 2016. (in Chinese)
    [22]
    公路隧道设计细则: JTG/T D70—2010[S]. 北京: 人民交通出版社, 2010.

    Guidelines for Design of Highway Tunnel: JTG/T D70—2010[S]. Beijing: China Communications Press, 2010. (in Chinese)
  • Cited by

    Periodical cited type(7)

    1. 罗强,程田,薛元,刘宏扬,张东卿. 路堤下CFG桩复合地基稳定性分析方法及试验验证. 铁道学报. 2024(11): 145-154 .
    2. 周岳,柯辉,庞正伟,汪旭,祝必仁,王虎. 基坑开挖对超深软土复合地基桩体的影响研究. 广州建筑. 2023(06): 1-4 .
    3. 罗强,马宏飞,王腾飞,张良,蒋良潍. 路堤下混凝土桩复合地基抗桩体弯折破坏地梁效应. 中南大学学报(自然科学版). 2022(08): 3144-3155 .
    4. 郑刚,赵佳鹏,周海祚,于晓旋,夏博洋,王金山. 国内外高速公路、铁路地基处理技术回顾. 地基处理. 2021(02): 91-99 .
    5. 张经双,段雪雷,吴倩云,刘永翔,夏香港. 氯盐-干湿循环耦合作用下水泥土的力学性能. 建筑材料学报. 2021(03): 508-515+550 .
    6. 刘仕东. 上合组织(连云港)国际物流园专用铁路搅拌桩水泥掺量研究. 铁道勘察. 2020(02): 47-52 .
    7. 郑刚,周海祚. 复合地基极限承载力与稳定研究进展. 天津大学学报(自然科学与工程技术版). 2020(07): 661-673 .

    Other cited types(13)

Catalog

    Article views (205) PDF downloads (52) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return