• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
TONG Senjie, HUANG Maosong, SHI Zhenhao, WANG Bin. Experimental study on mechanical properties of gassy sand with high degree of saturation and state-dependent constitutive modeling[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(7): 1392-1400. DOI: 10.11779/CJGE20240115
Citation: TONG Senjie, HUANG Maosong, SHI Zhenhao, WANG Bin. Experimental study on mechanical properties of gassy sand with high degree of saturation and state-dependent constitutive modeling[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(7): 1392-1400. DOI: 10.11779/CJGE20240115

Experimental study on mechanical properties of gassy sand with high degree of saturation and state-dependent constitutive modeling

Funds: 

the National Natural Science Foundation of China 11972260

More Information
  • Received Date: February 01, 2024
  • Revised Date: December 01, 2024
  • Accepted Date: December 09, 2024
  • Available Online: December 09, 2024
  • Published Date: December 10, 2024
  • The special existence of gas in gassy sand makes its basic properties different from those of general unsaturated soils. To analyze the undrained mechanical properties and static liquefaction instability of gassy sand, this work extends the triaxial test system equipped with dual pressure chamber to achieve the preparation and triaxial tests on the gassy sand with high degree of saturation. Based on the modified triaxial test system, a series of triaxal tests on the saturated sand and gassy sand are conducted, and the second-order work criterion and determinant criterion for identifying static liquefaction of the gassy sand are proposed. The results show that a small amount of entrapped gas can significantly increase the shear strength and axial deformation requested for triggering static liquefaction, and thus improve its resistance to static liquefaction. The second-order work criterion implicitly includes the current strain path, which can accurately determine the triggering of static liquefaction of the gassy sand, while the determinant criterion is a necessary condition for the second-order work criterion, determining whether there is a strain path that makes the soils unstable under the current state, which is the lower limit of static liquefaction instability.
  • [1]
    FREDLUND D G, RAHARDJO H. Soil Mechanics for Unsaturated Soils[M]. New York: John Wiley & Sons, 1993.
    [2]
    FINNO R J, ZHANG Y, BUSCARNERA G. Experimental validation of Terzaghi's effective stress principle for gassy sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(12): 04017092. doi: 10.1061/(ASCE)GT.1943-5606.0001797
    [3]
    GROZIC J L, ROBERTSON P K, MORGENSTERN N R. The behavior of loose gassy sand[J]. Canadian Geotechnical Journal, 1999, 36(3): 482-492. doi: 10.1139/t99-007
    [4]
    孔令伟, 钟方杰, 郭爱国, 等. 杭州湾浅层储气砂土应力路径试验研究[J]. 岩土力学, 2009, 30(8): 2209-2214. doi: 10.3969/j.issn.1000-7598.2009.08.001

    KONG Lingwei, ZHONG Fangjie, GUO Aiguo, et al. Experimental study of stress path of shallow gassy sand of Hangzhou Bay[J]. Rock and Soil Mechanics, 2009, 30(8): 2209-2214. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.08.001
    [5]
    HE J, CHU J. Undrained responses of microbially desaturated sand under monotonic loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(5): 04014003. doi: 10.1061/(ASCE)GT.1943-5606.0001082
    [6]
    HONG Y, WANG L Z, NG C W W, et al. Effect of initial pore pressure on undrained shear behaviour of fine-grained gassy soil[J]. Canadian Geotechnical Journal, 2017, 54(11): 1592-1600. doi: 10.1139/cgj-2017-0015
    [7]
    LADE P V. Static instability and liquefaction of loose fine sandy slopes[J]. Journal of Geotechnical Engineering, 1992, 118(1): 51-71. doi: 10.1061/(ASCE)0733-9410(1992)118:1(51)
    [8]
    NICOT F, HADDA N, BOURRIER F, et al. Failure mechanisms in granular media: a discrete element analysis[J]. Granular Matter, 2011, 13(3): 255-260. doi: 10.1007/s10035-010-0242-3
    [9]
    吕玺琳, 钱建固, 黄茂松. 不排水加载条件下K0固结饱和砂土失稳预测[J]. 岩土工程学报, 2015, 37(6): 1010-1015. doi: 10.11779/CJGE201506006

    LÜ Xilin, QIAN Jiangu, HUANG Maosong. Prediction of instability of K0-consolidated saturated sands under undrained loading conditions[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1010-1015. (in Chinese) doi: 10.11779/CJGE201506006
    [10]
    黄茂松, 童森杰, 时振昊, 等. 复杂应力路径下饱和砂土静态液化失稳预测[J]. 岩土工程学报, 2021, 43(1): 19-26. doi: 10.11779/CJGE202101002

    HUANG Maosong, TONG Senjie, SHI Zhenhao, et al. Prediction initiation of static liquefaction of saturated sand under complex stress paths[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 19-26. (in Chinese) doi: 10.11779/CJGE202101002
    [11]
    NOVA R. Controllability of the incremental response of soil specimens subjected to arbitrary loading programmes[J]. Journal of the Mechanical Behavior of Materials, 1994, 5(2): 193-202. doi: 10.1515/JMBM.1994.5.2.193
    [12]
    ANDRADE J E. A predictive framework for liquefaction instability[J]. Géotechnique, 2009, 59(8): 673-682. doi: 10.1680/geot.7.00087
    [13]
    BUSCARNERA G, DATTOLA G, DI PRISCO C. Controllability, uniqueness and existence of the incremental response: a mathematical criterion for elastoplastic constitutive laws[J]. International Journal of Solids and Structures, 2011, 48(13): 1867-1878. doi: 10.1016/j.ijsolstr.2011.02.016
    [14]
    NG C W W, ZHAN L T, CUI Y J. A new simple system for measuring volume changes in unsaturated soils[J]. Canadian Geotechnical Journal, 2002, 39(3): 757-764. doi: 10.1139/t02-015
    [15]
    土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [16]
    MULILIS J P, SEED H B, CHAN C K, et al. Effects of sample preparation on sand liquefaction[J]. Journal of the Geotechnical Engineering Division, 1977, 103(2): 91-108. doi: 10.1061/AJGEB6.0000387
    [17]
    WICHTMANN T, STELLER K, TRIANTAFYLLIDIS T. On the influence of the sample preparation method on strain accumulation in sand under high-cyclic loading[J]. Soil Dynamics and Earthquake Engineering, 2020, 131: 106028. doi: 10.1016/j.soildyn.2019.106028
    [18]
    RAD N S, TUMAY M T. Factors affecting sand specimen preparation by raining[J]. Geotechnical Testing Journal, 1987, 10(1): 31-37. doi: 10.1520/GTJ10136J
    [19]
    YIMSIRI S, SOGA K. DEM analysis of soil fabric effects on behaviour of sand[J]. Géotechnique, 2010, 60(6): 483-495. doi: 10.1680/geot.2010.60.6.483
    [20]
    SHI Z H, TONG S J, HUANG M S. Evaluation of instability of quasi-saturated sand with entrapped gas due to decreasing total confining stress[J]. Engineering Geology, 2021, 293: 106296. doi: 10.1016/j.enggeo.2021.106296
    [21]
    LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460. doi: 10.1680/geot.2000.50.4.449
    [22]
    BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99-112. doi: 10.1680/geot.1985.35.2.99
    [23]
    LI X S, WANG Y. Linear representation of steady-state line for sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(12): 1215-1217. doi: 10.1061/(ASCE)1090-0241(1998)124:12(1215)
    [24]
    VERDUGO R, ISHIHARA K. The steady state of sandy soils[J]. Soils and Foundations, 1996, 36(2): 81-91. doi: 10.3208/sandf.36.2_81
    [25]
    HOULSBY G T. The work input to an unsaturated granular material[J]. Géotechnique, 1997, 47(1): 193-196. doi: 10.1680/geot.1997.47.1.193
  • Cited by

    Periodical cited type(12)

    1. 刘正楠,张锐,唐德力,刘昭京,周豫. 膨胀土微结构对膨胀行为的影响. 土木与环境工程学报(中英文). 2024(02): 60-69 .
    2. 杨丽,朱艺媛,李正,姚华彦. 合肥膨胀土膨胀力特性试验研究. 工程与建设. 2024(04): 766-768+786 .
    3. 胡瑾,周亚东. 原状膨胀土二维胀缩各向异性试验研究. 建筑技术开发. 2024(12): 158-161 .
    4. 吴岗,贾景超,巴潇,刘雨童,张雪茹. 膨胀土二维膨胀力特性研究. 农业与技术. 2023(02): 60-64 .
    5. 刘雨童,贾景超,巴潇,张雪茹,吴岗. 平面应变状态下膨胀土二维膨胀力特性研究. 农业与技术. 2023(05): 71-75 .
    6. 方瑾瑾,杨小林,冯以鑫. 原状膨胀土的三向膨胀力变化特性. 岩石力学与工程学报. 2023(S1): 3722-3730 .
    7. 林宇亮,张震,罗桂军,肖洪波,杨果林,鲁立,段君义. 膨胀土边坡的水平膨胀力及桩板结构内力分析. 中南大学学报(自然科学版). 2022(01): 140-149 .
    8. 吕玺琳,范琪,刘泳钢,江杰. 含水率变化对膨胀土地基单桩承载特性影响数值模拟. 结构工程师. 2022(03): 117-122 .
    9. 张锐,龙明旭,刘昭京,郑健龙,刘正楠. 膨胀土的二维膨胀各向异性试验研究. 中国公路学报. 2022(10): 65-74 .
    10. 王玉平,王哲,赵雨,易发成,朱宝龙,吴亚东. 高压实膨润土-砂混合物膨胀性能实验研究. 中国矿业. 2021(09): 173-180 .
    11. 覃永富,卢望,袁梦祥,沈泰宇,李贤,汪时机. 巨大芽孢杆菌改良邯郸强膨胀土试验研究. 西南师范大学学报(自然科学版). 2020(08): 87-95 .
    12. 张锐,赵旭,郑健龙,刘正楠. 膨胀土侧向膨胀力试验研究与应用. 中国公路学报. 2020(09): 22-31 .

    Other cited types(16)

Catalog

    Article views PDF downloads Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return