• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Xiaochan, LAN Hengxing, LIU Shijie, SUN Weifeng. Elastoplastic constitutive model for granular materials considering meso-particle damage[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1289-1297. DOI: 10.11779/CJGE20240110
Citation: WANG Xiaochan, LAN Hengxing, LIU Shijie, SUN Weifeng. Elastoplastic constitutive model for granular materials considering meso-particle damage[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1289-1297. DOI: 10.11779/CJGE20240110

Elastoplastic constitutive model for granular materials considering meso-particle damage

More Information
  • Received Date: February 01, 2024
  • Available Online: September 12, 2024
  • Establishing a constitutive model for granular materials that accounts for particle shape and breakage mechanisms has been crucial for calculating the mechanical stability of earth-rock dam projects. Initially, through the triaxial compression tests, the effects of particle breakage, rotation and sliding on the deformation of granular materials with varying shapes are examined. The particle slip/rotation is dominant at low stress level, and the energy dissipation is small. With the increase of the stress level, the influences of particle breakage are more prominent. Subsequently, the mathematical expressions for the particle crushing energy and dilatancy energy that consider particle shape are developed based on the geotechnical damage mechanics and thermodynamics. By incorporating the particle breakage rate equation, the evolution laws of particle crushing energy dilatancy energy, and breakage degree during compression are elucidated, quantitatively revealing the meso-particle breakage deformation mechanism. These mathematical relationships of meso-deformation mechanisms are integrated into the D-C model, then an elastoplastic constitutive model that considers both the particle shape and the meso-particle breakage mechanisms is derived. Finally, the validity and reliability of the proposed model are confirmed by comparing the experimental curves with the theoretical predictions.
  • [1]
    CHANG W J, PHANTACHANG T. Effects of gravel content on shear resistance of gravelly soils[J]. Engineering Geology, 2016, 207: 78-90. doi: 10.1016/j.enggeo.2016.04.015
    [2]
    JIANG Y, WANG G H, KAMAI T, et al. Effect of particle size and shear speed on frictional instability in sheared granular materials during large shear displacement[J]. Engineering Geology, 2016, 210: 93-102. doi: 10.1016/j.enggeo.2016.06.005
    [3]
    KIM D, HA S. Effects of particle size on the shear behavior of coarse grained soils reinforced with geogrid[J]. Materials, 2014, 7(2): 963-979. doi: 10.3390/ma7020963
    [4]
    WANG P, YIN Z Y, WANG Z Y. Micromechanical investigation of particle-size effect of granular materials in biaxial test with the role of particle breakage[J]. Journal of Engineering Mechanics, 2022, 148(1): 04021133. doi: 10.1061/(ASCE)EM.1943-7889.0002039
    [5]
    ZHOU L L, CHU X H, XU Y J. DEM investigation on characteristics of rolling resistance for modelling particle shape[J]. EPJ Web of Conferences, 2017, 140: 05005. doi: 10.1051/epjconf/201714005005
    [6]
    ZHANG X L, WANG X L, CHEN S L, et al. Biaxial compression test and application considering interparticle rolling resistance and particle shape effects[J]. Soil Dynamics and Earthquake Engineering, 2020, 139: 106394. doi: 10.1016/j.soildyn.2020.106394
    [7]
    CHO G C, DODDS J, SANTAMARINA J C. Particle shape effects on packing density, stiffness, and strength: natural and crushed sands[J]. Journal of Geotechnical and Geo-environmental Engineering, 2006, 132(5): 591-602. doi: 10.1061/(ASCE)1090-0241(2006)132:5(591)
    [8]
    NIE Z H, FANG C F, GONG J, et al. Exploring the effect of particle shape caused by erosion on the shear behaviour of granular materials via the DEM[J]. International Journal of Solids and Structures, 2020, 202: 1-11. doi: 10.1016/j.ijsolstr.2020.05.004
    [9]
    POLANÍA O, CABRERA M, RENOUF M, et al. Grain size distribution does not affect the residual shear strength of granular materials: an experimental proof[J]. Physical Review E, 2023, 107(5): L052901. doi: 10.1103/PhysRevE.107.L052901
    [10]
    王帅, 郅彬, 覃燕林, 等. 人工制备易破碎颗粒材料的力学特性[J]. 西安建筑科技大学学报(自然科学版), 2020, 52(6): 881-888.

    WANG Shuai, ZHI Bin, QIN Yanlin, et al. Mechanical properties of artificially prepared crushing granular materials[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2020, 52(6): 881-888. (in Chinese)
    [11]
    孙壮壮, 马刚, 周伟, 等. 颗粒形状对堆石颗粒破碎强度尺寸效应的影响[J]. 岩土力学, 2021, 42(2): 430-438.

    SUN Zhuangzhuang, MA Gang, ZHOU Wei, et al. Influence of particle shape on size effect of crushing strength of rockfill particles[J]. Rock and Soil Mechanics, 2021, 42(2): 430-438. (in Chinese)
    [12]
    米占宽, 李国英, 陈铁林. 考虑颗粒破碎的堆石体本构模型[J]. 岩土工程学报, 2007, 29(12): 1865-1869. doi: 10.3321/j.issn:1000-4548.2007.12.019

    MI Zhankuan, LI Guoying, CHEN Tielin. Constitutive model for rockfill material considering grain crushing[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12): 1865-1869. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.12.019
    [13]
    石修松, 程展林. 堆石料颗粒破碎的分形特性[J]. 岩石力学与工程学报, 2010, 29(增刊2): 3852-3857.

    SHI Xiusong, CHENG Zhanlin. Fractal behavior in crushing of rockfill material[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2): 3852-3857. (in Chinese)
    [14]
    GUO W L, CHEN G. Particle breakage and gradation evolution of rockfill materials during triaxial shearing based on the breakage energy[J]. Acta Geotechnica, 2022, 17(11): 5351-5358. doi: 10.1007/s11440-022-01690-7
    [15]
    武颖利, 皇甫泽华, 郭万里, 等. 考虑颗粒破碎影响的粗粒土临界状态研究[J]. 岩土工程学报, 2019, 41(增刊2): 25-28. doi: 10.11779/CJGE2019S2007

    WU Yingli, HUANGFU Zehua, GUO Wanli, et al. Influences of particle breakage on critical state of coarse-grained soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 25-28. (in Chinese) doi: 10.11779/CJGE2019S2007
    [16]
    王刚, 杨俊杰, 王兆南. 钙质砂临界状态随颗粒破碎演化规律分析[J]. 岩土工程学报, 2021, 43(8): 1511-1517.

    WANG Gang, YANG Junjie, WANG Zhaonan. Evolution of critical state of calcareous sand during particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1511-1517. (in Chinese)
    [17]
    郭万里, 蔡正银, 武颖利, 等. 粗粒土的颗粒破碎耗能及剪胀方程研究[J]. 岩土力学, 2019, 40(12): 4703-4710.

    GUO Wanli, CAI Zhengyin, WU Yingli, et al. Study on the particle breakage energy and dilatancy of coarse-grained soils[J]. Rock and Soil Mechanics, 2019, 40(12): 4703-4710. (in Chinese)
    [18]
    刘恩龙, 陈生水, 李国英, 等. 堆石料的临界状态与考虑颗粒破碎的本构模型[J]. 岩土力学, 2011, 32(增刊2): 148-154.

    LIU Enlong, CHEN Shengshui, LI Guoying, et al. Critical state of rockfill materials and a constitutive model considering grain crushing[J]. Rock and Soil Mechanics, 2011, 32(S2): 148-154. (in Chinese)
    [19]
    邵晓泉, 迟世春. 堆石料变形参数的粒径尺寸相关性研究[J]. 岩土工程学报, 2020, 42(9): 1715-1722. doi: 10.11779/CJGE202009016

    SHAO Xiaoquan, CHI Shichun. Particle size correlation of deformation parameters for rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1715-1722. (in Chinese) doi: 10.11779/CJGE202009016
    [20]
    张凌凯, 王睿, 张建民, 等. 考虑颗粒破碎效应的堆石料静动力本构模型[J]. 岩土力学, 2019, 40(7): 2547-2554, 2562.

    ZHANG Lingkai, WANG Rui, ZHANG Jianmin, et al. A static and dynamic constitutive model of rockfill material considering particle breakage[J]. Rock and Soil Mechanics, 2019, 40(7): 2547-2554, 2562. (in Chinese)
    [21]
    张凌凯, 王睿, 张建民, 等. 不同应力路径下堆石料的动力变形特性试验研究[J]. 工程力学, 2019, 36(3): 114-120, 130.

    ZHANG Lingkai, WANG Rui, ZHANG Jianmin, et al. Experimental study on dynamic deformation characteristics of rockfill materials under different stress paths[J]. Engineering Mechanics, 2019, 36(3): 114-120, 130. (in Chinese)
    [22]
    郅彬, 王小婵, 刘恩龙. 颗粒形状对粒状材料破碎演化规律及强度准则影响[J]. 岩土力学, 2023, 44(3): 649-662, 833.

    ZHI Bin, WANG Xiaochan, LIU Enlong. Influence of particle shape on the particle crushing law and strength criterion for granular materials[J]. Rock and Soil Mechanics, 2023, 44(3): 649-662, 833. (in Chinese)
    [23]
    TIAN J Q, LIU E L. Effect of particle shape on micro- and mesostructure evolution of granular assemblies under biaxial loading conditions[J]. Comptes Rendus Mécanique, 2018, 346(12): 1233-1252. doi: 10.1016/j.crme.2018.08.013
    [24]
    UENG T S, CHEN T J. Energy aspects of particle breakage in drained shear of sands[J]. Géotechnique, 2000, 50(1): 65-72. doi: 10.1680/geot.2000.50.1.65
    [25]
    SALIM W, INDRARATNA B. A new elastoplastic constitutive model for coarse granular aggregates incorporating particle breakage[J]. Canadian Geotechnical Journal, 2004, 41(4): 657-671. doi: 10.1139/t04-025
    [26]
    NAKATA A F L, HYDE M, HYODO H, et al. A probabilistic approach to sand particle crushing in the triaxial test[J]. Géotechnique, 1999, 49(5): 567-583. doi: 10.1680/geot.1999.49.5.567
    [27]
    COOP M R, SORENSEN K K, FREITAS T B, et al. Particle breakage during shearing of a carbonate sand[J]. Géotechnique, 2004, 54(3): 157-163. doi: 10.1680/geot.2004.54.3.157

Catalog

    Article views (214) PDF downloads (56) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return