Citation: | LING Daosheng, SHI Changyu, ZHENG Jianjing, YAN Zizhuang, ZHAO Tianhao, ZHAO Yu. Tests on object motion in centrifugal hypergravity field and analysis of rainfall simulation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1132-1141. DOI: 10.11779/CJGE20240046 |
[1] |
CHEN Y M, TANG Y, LING D S, et al. Hypergravity experiments on multiphase media evolution[J]. Science China Technological Sciences, 2022, 65(12): 2791-2808. doi: 10.1007/s11431-022-2125-x
|
[2] |
NG C W W. The state-of-the-art centrifuge modelling of geotechnical problems at HKUST[J]. Journal of Zhejiang University-Science A: Applied Physics & Engineering, 2014, 15(1): 1-21.
|
[3] |
BYRNE P M, PARK S S, BEATY M, et al. Numerical modeling of liquefaction and comparison with centrifuge tests[J]. Canadian Geotechnical Journal, 2004, 41(2): 193-211. doi: 10.1139/t03-088
|
[4] |
MANZARI M T, GHORAIBY M E, KUTTER B L, et al. Liquefaction experiment and analysis projects (LEAP): Summary of observations from the planning phase[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 714-743. doi: 10.1016/j.soildyn.2017.05.015
|
[5] |
马立秋, 张建民, 张武. 爆炸离心模型试验研究进展与展望[J]. 岩土力学, 2011, 32(9): 2827-2833. doi: 10.3969/j.issn.1000-7598.2011.09.044
MA Liqiu, ZHANG Jianmin, ZHANG Wu. Development and prospect for centrifugal blasting modeling[J]. Rock and Soil Mechanics, 2011, 32(9): 2827-2833. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.09.044
|
[6] |
周健, 杜强, 李业勋, 等. 无黏性土滑坡型泥石流形成机理的离心机模型试验研究[J]. 岩土工程学报, 2014, 36(11): 2010-2017. doi: 10.11779/CJGE201411006
ZHOU Jian, DU Qiang, LI Yexun, et al. Centrifugal model tests on formation mechanism of landslide-type debris flows of cohesiveless soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2010-2017. (in Chinese) doi: 10.11779/CJGE201411006
|
[7] |
XU J W, UEDA K, UZUOKA R. Evaluation of failure of slopes with shaking-induced cracks in response to rainfall[J]. Landslides, 2022, 19(1): 119-136. doi: 10.1007/s10346-021-01734-1
|
[8] |
TAYLOR R N. Centrifuges in Modeling: Principles and Scale Effects[M]// Geotechnical Centrifuge Technology. London: CRC Press, 2018: 19-33.
|
[9] |
SCHOFIELD A N. Cambridge geotechnical centrifuge operations[J]. Géotechnique, 1980, 30(3): 227-268. doi: 10.1680/geot.1980.30.3.227
|
[10] |
TOBITA T, ASHINO T, REN J, et al. Kyoto University LEAP-GWU-2015 tests and the importance of curving the ground surface in centrifuge modelling[J]. Soil Dynamics and Earthquake Engineering, 2018, 113: 650-662. doi: 10.1016/j.soildyn.2017.10.012
|
[11] |
王永志, 王海, 袁晓铭, 等. 土工离心试验应力相似差异特征与设计准则[J]. 岩土工程学报, 2018, 40(11): 2148-2154. doi: 10.11779/CJGE201811023
WANG Yongzhi, WANG Hai, YUAN Xiaoming, et al. Difference characteristics of stress similitude for geotechnical centrifuge modelling and design criteria[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2148-2154. (in Chinese) doi: 10.11779/CJGE201811023
|
[12] |
LEI G, SHI J. Physical meanings of kinematics in centrifuge modelling technique[J]. Rock and Soil Mechanics, 2003, 24(2): 188-193. doi: 10.3969/j.issn.1000-7598.2003.02.008
|
[13] |
凌道盛, 施昌宇, 郑建靖, 等. 离心模型试验物质运动非惯性系效应[J]. 岩土工程学报, 2021, 43(2): 226-235. doi: 10.11779/CJGE202102002
LING Daosheng, SHI Changyu, ZHENG Jianjing, et al. Non-inertial effects on matter motion in centrifugal model tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 226-235. (in Chinese) doi: 10.11779/CJGE202102002
|
[14] |
ITOH K, TOYOSAWA Y, KUSAKABE O. Centrifugal modelling of rockfall events[J]. International Journal of Physical Modelling in Geotechnics, 2009, 9(2): 1-22. doi: 10.1680/ijpmg.2009.090201
|
[15] |
CAICEDO B. Mathematical and physical modelling of rainfall in centrifuge[J]. International Journal of Physical Modelling in Geotechnics, 2015, 15(3): 150-164. doi: 10.1680/jphmg.14.00023
|
[16] |
陈云敏, 韩超, 凌道盛, 等. ZJU400离心机研制及其振动台性能评价[J]. 岩土工程学报, 2011, 33(12): 1887-1894. https://cge.nhri.cn/article/id/14444
CHEN Yunmin, HAN Chao, LING Daosheng, et al. Development of geotechnical centrifuge ZJU400 and performance assessment of its shaking table system[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1887-1894. (in Chinese) https://cge.nhri.cn/article/id/14444
|
[17] |
ZHAO S, KANG F, LI J. Displacement monitoring for slope stability evaluation based on binocular vision systems[J]. Optik, 2018, 171: 658-671. doi: 10.1016/j.ijleo.2018.06.097
|
[18] |
LI H, WU H, LOU L, et al. Ping-pong robotics with high-speed vision system[C]// Control Automation Robotics & Vision (ICARCV), Guangzhou, 2012, IEEE: 106-111.
|
[19] |
CAICEDO B, TRISTANCHO J. A virtual rain simulator for droplet transport in a centrifuge[C]// Proceedings of the 7th International Conference on Physical Modelling in Geotechnics (ICPMG), Zurich, 2010.
|
[20] |
CHENG C H, CHOW C L, CHOW W K. Trajectories of large respiratory droplets in indoor environment: A simplified approach[J]. Building and Environment, 2020, 183: 107196. doi: 10.1016/j.buildenv.2020.107196
|
[21] |
SIDAHMED M M, TAHER M D, BROWN R B. A virtual nozzle for simulation of spray generation and droplet transport[J]. Biosystems Engineering, 2005, 92(3): 295-307. doi: 10.1016/j.biosystemseng.2005.07.012
|
[22] |
刘小川. 降雨诱发非饱和土边坡浅层失稳离心模型试验及分析方法[D]. 杭州: 浙江大学, 2017.
LIU Xiaochuan. Centrifugal Model Test and Analysis Method of Shallow Instability of Unsaturated Soil Slope Induced by Rainfall[D]. Hangzhou: Zhejiang University, 2017. (in Chinese)
|
[23] |
ZHANG G, QIAN J, WANG R, et al. Centrifuge model test study of rainfall-induced deformation of cohesive soil slopes[J]. Soils and Foundations, 2011, 51(2): 297-305. doi: 10.3208/sandf.51.297
|
[24] |
WANG S, IDINGER G. A device for rainfall simulation in geotechnical centrifuges[J]. Acta Geotech, 2021, 16: 2887-2898. doi: 10.1007/s11440-021-01186-w
|
[25] |
BHATTACHERJEE D, VISWANADHAM B V. Design and performance of an in-flight rainfall simulator in a geotechnical centrifuge[J]. Geotechnical Testing Journal, 2018, 41(1): 72-91. doi: 10.1520/GTJ20160254
|
[26] |
SERIO M A, CAROLLO F G, FERRO V. Raindrop size distribution and terminal velocity for rainfall erosivity studies: A review[J]. Journal of Hydrology, 2019, 576: 210-228. doi: 10.1016/j.jhydrol.2019.06.040
|
[27] |
CHEN Y, IRFAN M, UCHIMURA T, et al. Development of elastic wave velocity threshold for rainfall-induced landslide prediction and early warning[J]. Landslides, 2019, 16(5): 955-968. doi: 10.1007/s10346-019-01138-2
|
[28] |
HUNG W Y, TRAN M C, YEH F H, et al. Centrifuge modeling of failure behaviors of sandy slope caused by gravity, rainfall, and base shaking[J]. Engineering Geology, 2020, 271: 105609. doi: 10.1016/j.enggeo.2020.105609
|
[29] |
MOORE I D, HIRSCHI M C, BARFIELD B J. Kentucky rainfall simulator[J]. Transactions of the Asae, 1983, 26(4): 1085-1089. doi: 10.13031/2013.34081
|
[30] |
BLANQUIES J, SCHARFF M, HALLOCK B. The design and construction of a rainfall simulator[C]// Int Eros Control Assoc, (IECA), 2003 34th Annu Conf Expo, Las Vegas, 2003.
|
[31] |
HORNE M A. Design and Construction of A Rainfall Simulator for Large-Scale Testing of Erosion Control Practices and Products[D]. Alabama: Auburn University, 2017.
|
[32] |
CHRISTIANSEN J E. Irrigation by Sprinkling[M]. Berkeley: University of California, 1942.
|
[33] |
GRISSO R, ASKEW S, MCCALL D. Nozzles: selection and sizing[J]. Virginia Cooperative Extension, 2019, 442(32): 1-10.
|