• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
CHENG Xinjun, XU Kunpeng, JING Liping, CUI Jie, LI Yadong, LIANG Hai'an. Response mechanism of soil-immersed tunnel based on static pushover model tests[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(7): 1443-1453. DOI: 10.11779/CJGE20240022
Citation: CHENG Xinjun, XU Kunpeng, JING Liping, CUI Jie, LI Yadong, LIANG Hai'an. Response mechanism of soil-immersed tunnel based on static pushover model tests[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(7): 1443-1453. DOI: 10.11779/CJGE20240022

Response mechanism of soil-immersed tunnel based on static pushover model tests

Funds: 

the Natural Science Foundation of China 52008081

the Natural Science Foundation of China 52020105002

the Natural Science Foundation of China 52168045

the Natural Science Foundation of China 52178392

More Information
  • Received Date: January 07, 2024
  • Revised Date: December 13, 2024
  • Accepted Date: January 30, 2025
  • Available Online: December 23, 2024
  • Published Date: January 31, 2025
  • The static pushover tests on the underground structures mainly concentrate on consistent deformation of soils, with scarcely any studies considering soil dislocation. A regional pushover method is proposed. The static pushover model tests on soil-immersed tunnel are conducted. The deformation and mechanical features of soils and immersed tunnel are carefully analyzed. The failure mode of the immersion joint and the soil-immersed tunnel interaction mechanism are revealed. The test results show that the immersed tunnel exhibits strong adaptability to soil deformation owning to the flexible joint. With the increase of soil dislocation, the earth pressure difference at the same depth of two tunnel elements near and away from the pushover plate can reach up to 71.6 kPa, and obvious relative displacement occurs between two tunnel elements. Structural failure phenomenon is mainly concentrated at the shear key of the tunnel element near the pushover plate, and the story shifts of the two tunnel elements near and away from the pushover plate are 1/223 and 1/1024, respectively. The soil-immersed tunnel interaction can be divided into three stages: soil compacting stage, rapid development of differential deformation stage, and joint failure stage. The stiffness of the tunnel element maintains well, and the soil-structure interaction coefficients obtained from the two observation surfaces develop slowly during the soil compacting stage. Obvious relative displacement occurs between two tunnel elements during the rapid development stage of soil dislocation. Meanwhile, the soil-structure interaction coefficient near the pushover plate exceeds 1. Furthermore, the soil-structure interaction coefficient away from the pushover plate still develops slowly. The soil-structure interaction coefficients near and away from the pushover plate are 3.10 and 0.67, respectively, during the joint failure stage. The study can provide experimental and technical support for the seismic analysis and risk assessment of immersed tunnels.
  • [1]
    刘凌锋, 林巍, 尹海卿, 等. 世界交通沉管隧道工程建造情况与我国沉管科技发展现状[J]. 中国港湾建设, 2021, 41(8): 71-79.

    LIU Lingfeng, LIN Wei, YIN Haiqing, et al. Construction of immersed tunnel engineering in the world and development status of immersed tunnel technology in China[J]. China Harbour Engineering, 2021, 41(8): 71-79. (in Chinese)
    [2]
    禹海涛, 袁勇, 徐国平, 等. 超长沉管隧道抗震设计及其关键性问题分析[J]. 上海交通大学学报, 2012, 46(1): 94-98.

    YU Haitao, YUAN Yong, XU Guoping, et al. Issues on the seismic design and analysis of ultra-long immersed tunnel[J]. Journal of Shanghai Jiao Tong University, 2012, 46(1): 94-98. (in Chinese)
    [3]
    KIYOMIYA O. Earthquake-resistant design features of immersed tunnels in Japan[J]. Tunnelling and Underground Space Technology, 1995, 10(4): 463-475. doi: 10.1016/0886-7798(95)00033-U
    [4]
    ANASTASOPOULOS I, GEROLYMOS N, DROSOS V, et al. Nonlinear response of deep immersed tunnel to strong seismic shaking[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(9): 1067-1090. doi: 10.1061/(ASCE)1090-0241(2007)133:9(1067)
    [5]
    LYNGS J H. Model Accuracy in Aseismic Design of Immersed Tunnel[D]. Greece: Aalborg University, 2008.
    [6]
    傅继阳, 吴玖荣, 徐安. 广州洲头咀沉管隧道地震响应研究[J]. 湖南大学学报(自然科学版), 2008, 35(9): 23-27.

    FU Jiyang, WU Jiurong, XU An. Seismic response of Zhoutouzui immersed tunnel in Guangzhou[J]. Journal of Hunan University (Natural Sciences), 2008, 35(9): 23-27. (in Chinese)
    [7]
    严松宏, 潘昌实. 沉管隧道地震响应分析[J]. 现代隧道技术, 2006, 43(2): 15-21.

    YAN Songhong, PAN Changshi. Seismic response analyses of an immersed tube tunnel[J]. Modern Tunnelling Technology, 2006, 43(2): 15-21. (in Chinese)
    [8]
    DING J H, JIN X L, GUO Y Z, et al. Numerical simulation for large-scale seismic response analysis of immersed tunnel[J]. Engineering Structures, 2006, 28(10): 1367-1377. doi: 10.1016/j.engstruct.2006.01.005
    [9]
    陈红娟, 闫维明, 陈适才, 等. 基于有限元-无限元的沉管隧道三维动力响应分析[J]. 现代隧道技术, 2018, 55(3): 106-111.

    CHEN Hongjuan, YAN Weiming, CHEN Shicai, et al. Analysis of 3D dynamic response of immersed tunnels based on finite element/infinite element[J]. Modern Tunnelling Technology, 2018, 55(3): 106-111. (in Chinese)
    [10]
    禹海涛, 宋毅, 李亚东, 等. 沉管隧道多尺度方法与地震响应分析[J]. 同济大学学报(自然科学版), 2021, 49(6): 807-815.

    YU Haitao, SONG Yi, LI Yadong, et al. Multi-scale method and seismic response analysis of immersed tunnel[J]. Journal of Tongji University (Natural Science), 2021, 49(6): 807-815. (in Chinese)
    [11]
    禹海涛, 李心熙, 袁勇, 等. 沉管隧道纵向地震易损性分析方法[J]. 中国公路学报, 2022, 35(10): 13-22.

    YU Haitao, LI Xinxi, YUAN Yong, et al. Seismic vulnerability analysis method for longitudinal response of immersed tunnels[J]. China Journal of Highway and Transport, 2022, 35(10): 13-22. (in Chinese)
    [12]
    李心熙, 禹海涛. 沉管隧道纵向抗震韧性评价方法研究[J]. 震灾防御技术, 2023, 18(1): 37-43.

    LI Xinxi, YU Haitao. Seismic resilience assessment for longitudinal response of immersed tunnels[J]. Technology for Earthquake Disaster Prevention, 2023, 18(1): 37-43. (in Chinese)
    [13]
    YU H T, YAN X, BOBET A, et al. Multi-point shaking table test of a long tunnel subjected to non-uniform seismic loadings[J]. Bulletin of Earthquake Engineering, 2018, 16(2): 1041-1059. doi: 10.1007/s10518-017-0223-6
    [14]
    YU H T, YUAN Y, XU G P, et al. Multi-point shaking table test for long tunnels subjected to non-uniform seismic loadings-part Ⅱ: Application to the HZM immersed tunnel[J]. Soil Dynamics and Earthquake Engineering, 2018, 108: 187-195. doi: 10.1016/j.soildyn.2016.08.018
    [15]
    CHEN H J, LI X J, YAN W M, et al. Shaking table test of immersed tunnel considering the geological condition[J]. Engineering Geology, 2017, 227: 93-107. doi: 10.1016/j.enggeo.2017.05.014
    [16]
    陈红娟, 闫维明, 陈适才, 等. 沉管隧道–接头–场地土振动台试验研究[J]. 岩土工程学报, 2018, 40(4): 634-644. doi: 10.11779/CJGE201804007

    CHEN Hongjuan, YAN Weiming, CHEN Shicai, et al. Shaking table tests on immersed tunnel-joint-soil[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 634-644. (in Chinese) doi: 10.11779/CJGE201804007
    [17]
    程新俊, 景立平, 崔杰, 等. 不同场地沉管隧道振动台模型试验研究[J]. 西南交通大学学报, 2017, 52(6): 1113-1120.

    CHENG Xinjun, JING Liping, CUI Jie, et al. Research of shaking table model tests on immersed tunnels under different conditions[J]. Journal of Southwest Jiaotong University, 2017, 52(6): 1113-1120. (in Chinese)
    [18]
    HU Z N, XIE Y L, XU G P, et al. Segmental joint model tests of immersed tunnel on a settlement platform: a case study of the Hongkong-Zhuhai-Macao Bridge[J]. Tunnelling and Underground Space Technology, 2018, 78: 188-200. doi: 10.1016/j.tust.2018.03.020
    [19]
    袁勇, 禹海涛, 萧文浩, 等. 沉管隧道管节接头混凝土剪力键压剪破坏试验研究[J]. 工程力学, 2017, 34(3): 149-154, 181.

    YUAN Yong, YU Haitao, XIAO Wenhao, et al. Experimental failure analysis on concrete shear keys in immersion joint subjected to compression-shear loading[J]. Engineering Mechanics, 2017, 34(3): 149-154, 181. (in Chinese)
    [20]
    程新俊, 景立平, 崔杰, 等. 沉管隧道管节接头剪切破坏试验[J]. 中国公路学报, 2020, 33(4): 99-105.

    CHENG Xinjun, JING Liping, CUI Jie, et al. Experimental failure analysis on immersed tunnel joint subjected to shear loading[J]. China Journal of Highway and Transport, 2020, 33(4): 99-105. (in Chinese)
    [21]
    许成顺, 韩润波, 杜修力, 等. 考虑土-结构相互作用的弹簧-地下结构体系静力推覆试验技术及其试验研究[J]. 建筑结构学报, 2023, 44(1): 248-258.

    XU Chengshun, HAN Runbo, DU Xiuli, et al. Static pushover test technology and experimental study of spring-underground structure system considering soil-structure interaction[J]. Journal of Building Structures, 2023, 44(1): 248-258. (in Chinese)
    [22]
    杨靖, 庄海洋, 王伟, 等. 地下结构地震破坏的大比尺循环推覆加载模型试验方法及其验证[J]. 岩土工程学报, 2023, 45(4): 796-804.

    YANG Jing, ZHUANG Haiyang, WANG Wei, et al. Large-scale cyclic-loading pushover test method and its verification for seismic damage of underground structures[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 796-804. (in Chinese)
    [23]
    韩润波, 许成顺, 杜修力, 等. 土-地下结构体系拟静力推覆试验模型箱类型的优选[J]. 岩土力学, 2021, 42(2): 462-470.

    HAN Runbo, XU Chengshun, DU Xiuli, et al. Optimization of model box type in quasi-static pushover test of soil-underground structure system[J]. Rock and Soil Mechanics, 2021, 42(2): 462-470. (in Chinese)
    [24]
    徐琨鹏, 景立平, 程新俊, 等. 基于边界位移法的地下结构推覆试验可行性研究[J]. 岩土力学, 2022, 43(1): 127-138.

    XU Kunpeng, JING Liping, CHENG Xinjun, et al. Feasibility study of pushover test of underground structure based on boundary displacement method[J]. Rock and Soil Mechanics, 2022, 43(1): 127-138. (in Chinese)
    [25]
    杨政, 廖红建, 楼康禺. 微粒混凝土受压应力应变全曲线试验研究[J]. 工程力学, 2002, 19(2): 90-94.

    YANG Zheng, LIAO Hongjian, LOU Kangyu. Experimental study of the full curve of the stress-strain relationship for microconcrete[J]. Engineering Mechanics, 2002, 19(2): 90-94. (in Chinese)
    [26]
    禹海涛, 张正伟, 朱春成, 等. 关于反应位移法中地层变形模式的讨论[J]. 结构工程师, 2018, 34(2): 145-151.

    YU Haitao, ZHANG Zhengwei, ZHU Chuncheng, et al. Discussion on the ground deformation mode in response displacement method[J]. Structural Engineers, 2018, 34(2): 145-151. (in Chinese)
    [27]
    董正方, 王君杰, 姚毅超, 等. 城市轨道交通地下结构抗震性能指标体系研究[J]. 地震工程与工程振动, 2014, 34(增刊1): 699-705.

    DONG Zhengfang, WANG Junjie, YAO Yichao, et al. Research on the seismic performance index system of urban mass transit underground structures[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(S1): 699-705. (in Chinese)
    [28]
    徐琨鹏, 景立平, 宾佳, 等. 地下结构抗震分析中基床系数取值试验研究[J]. 西南交通大学学报, 2021, 56(5): 1035-1042.

    XU Kunpeng, JING Liping, BIN Jia, et al. Experimental study on coefficient value of subgrade reaction in seismic analysis of underground structures[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1035-1042. (in Chinese)
    [29]
    禹海涛, 萧文浩, 袁勇, 等. 沉管隧道接头与管节本体刚度比试验[J]. 中国公路学报, 2016, 29(12): 134-141.

    YU Haitao, XIAO Wenhao, YUAN Yong, et al. Experiment on stiffness ratio of immersion joint to immersed tunnel element[J]. China Journal of Highway and Transport, 2016, 29(12): 134-141. (in Chinese)
    [30]
    公路隧道抗震设计规范: TJG 2232—2019[S]. 北京: 人民交通出版社股份有限公司, 2020.

    Specification for Seismic Design of Highway Tunnels: TJG 2232—2019[S]. Beijing: China Communications Press Co., Ltd., 2020. (in Chinese)
    [31]
    PENZIEN J. Seismically induced racking of tunnel linings[J]. Earthquake Engineering & Structural Dynamics, 2000, 29(5): 683-691.
    [32]
    杜修力, 康凯丽, 许紫刚, 等. 地下结构地震反应的主要特征及规律[J]. 土木工程学报, 2018, 51(7): 11-21.

    DU Xiuli, KANG Kaili, XU Zigang, et al. Main characteristics and rules of seismic response for underground structures[J]. China Civil Engineering Journal, 2018, 51(7): 11-21. (in Chinese)
    [33]
    景立平, 徐琨鹏, 程新俊, 等. 水平推覆作用下土–地下结构反应特性研究[J]. 岩土工程学报, 2022, 44(9): 1567-1576. doi: 10.11779/CJGE202209001

    JING Liping, XU Kunpeng, CHENG Xinjun, et al. Response characteristics of soil–underground structures under horizontal pushover[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1567-1576. (in Chinese) doi: 10.11779/CJGE202209001
  • Related Articles

    [1]FU Huaihe, ZHANG Mingzhi, MAO Shuaidong, BAO Youzhi, HUANG Yinghao. Experimental study on combined solidification of sludge using industrial wastes reinforced alkali slag-cement[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(S1): 228-232. DOI: 10.11779/CJGE2025S10043
    [2]DUAN Kun, BIAN Xiao-ya, CHEN Jia-le, BAI Jun-long. Experimental investigation on clay stabilized by cement and waste brick fine aggregate[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 174-177. DOI: 10.11779/CJGE2021S2042
    [3]LI Mei, ZHAO Na, ZUO Yong-zhen, HE Xiao-min, TAN Fan. Influence of cement instead of mineral powder on long-term deformation characteristics of asphalt concrete[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 74-78. DOI: 10.11779/CJGE2017S1015
    [4]LIU Ming, SONG Jian-ping, LIU Jun, ZHOU Yue-feng. Uniformity of cement-improved expansive soil in mixing technology[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 59-63. DOI: 10.11779/CJGE2017S1012
    [5]LI Chen, ZHANG Zheng-fu, LIU Song-yu, CHENG Liang. Ettringite formation in lime and cement-stabilized clay[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 662-665.
    [6]BO Yu-lin, DU Yan-jun, WEI Ming-li, LIU Chen-yang. Effect of wetting-drying cycles on strength properties of ground granulated blast-furnace slag and magnesium oxide-stabilized soft clay[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 134-139.
    [7]YANG Youhai, LIANG Bo, DING Li. Experimental study on the strength behaviors of flyash-lime or flyash-cement[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 227-230.
    [8]Xun Yong. Test on strengthening soft soil with cementatory solidifying agent containing industrial waste[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 210-213.
    [9]Huang Xin, Hu Tongan. On stabilization of soft soil with waste gypsum and cement[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(5): 75-79.
    [10]Cheng Jianji, Kuang Jianzheng. Elementary Analysis of Chemical Cement Grouting Mechanism in Soft Foundation[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(3): 81-87.

Catalog

    Article views (113) PDF downloads (26) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return