• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
GU Xiaoqiang, ZHOU Hechen, HE Ping, ZHANG Zhongjie, XU Zhonghua, WANG Weidong. Inverse value of proportional coefficient of horizontal subgrade reaction m for Shanghai clayey soils and its engineering verification[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1199-1209. DOI: 10.11779/CJGE20240012
Citation: GU Xiaoqiang, ZHOU Hechen, HE Ping, ZHANG Zhongjie, XU Zhonghua, WANG Weidong. Inverse value of proportional coefficient of horizontal subgrade reaction m for Shanghai clayey soils and its engineering verification[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1199-1209. DOI: 10.11779/CJGE20240012

Inverse value of proportional coefficient of horizontal subgrade reaction m for Shanghai clayey soils and its engineering verification

More Information
  • Received Date: January 03, 2024
  • Available Online: July 23, 2024
  • The proportional coefficient of horizontal subgrade reaction m is a key parameter to calculate the deformation of retaining wall in excavations using the method for beams on elastic subgrade. However, the range of m value recommended in the existing design codes is quite large and does not consider the effects of soil properties and excavation dimensions. In this study, the differences and deficiencies of m value in different codes are firstly discussed, pointing out that actually m is a simplified parameter for deformation calculation in practice. For excavation, m should be related to the soil properties and excavation width and depth. Through the numerical analyses using HSS model and the appropriate soil parameters, lots of excavation deformation data are obtained by changing the excavation dimensions and void ratio of soils. Then inverse calculation is performed, and an empirical formula for m is proposed. By means of this method, the m values of the soils in 25 excavation projects in Shanghai are determined, and the associated deformations are calculated. The results show that the calculated maximum horizontal displacements of retaining wall are close to the measured ones, with an average error of 2.6%. The proposed method provides an accurate and efficient approach for determining m value for Shanghai clayey soils as well as an important reference for determining m value in other regions.
  • [1]
    徐中华, 王卫东. 敏感环境下基坑数值分析中土体本构模型的选择[J]. 岩土力学, 2010, 31(1): 258-264, 326.

    XU Zhonghua, WANG Weidong. Selection of soil constitutive models for numerical analysis of deep excavations in close proximity to sensitive properties[J]. Rock and Soil Mechanics, 2010, 31(1): 258-264, 326. (in Chinese)
    [2]
    建筑基坑支护技术规程: JGJ 120—2012[S]. 北京: 中国建筑工业出版社, 2012.

    Technical Specification for Retaining and Protection of Building Foundation Excavations: JGJ 120—2012[S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)
    [3]
    基坑工程技术标准: DG/TJ 08—61—2018[S]. 上海: 同济大学出版社, 2018.

    Technical Code for Excavation Engineering DG/TJ 08—61—2018[S]. Shanghai: Tongji University Press, 2018. (in Chinese)
    [4]
    冯俊福. 杭州地区地基土m值的反演分析[D]. 杭州: 浙江大学, 2004.

    FENG Junfu. Inversion Analysis of m Value of Foundation Soil in Hangzhou Area[D]. Hangzhou: Zhejiang University, 2004. (in Chinese)
    [5]
    何平. 上海黏土强度变形特性研究及其在基坑工程分析中的应用[D]. 上海: 同济大学, 2019.

    HE Ping. Strength and Deformation Characteristics of Shanghai Clay and its Application in the Analysis of Excavation Engineering[D]. Shanghai: Tongji University, 2019. (in Chinese)
    [6]
    袁静, 刘兴旺, 益德清. 基坑开挖过程中m参数的选取分析[J]. 工业建筑, 2000, 30(9): 46-51.

    YUAN Jing, LIU Xingwang, YI Deqing. Determination of m coefficient during excavation[J]. Industrial Construction, 2000, 30(9): 46-51. (in Chinese)
    [7]
    沈健. 基于"m"法的软土地区基坑工程时空效应研究[D]. 上海: 上海交通大学, 2006.

    SHEN Jian. Research on Time-Space Effect in Soft Soil Excavations Based on "m" Method[D]. Shanghai: Shanghai Jiao Tong University, 2006. (in Chinese)
    [8]
    王洪新, 李雪强, 杨石飞, 等. 对"应用于基坑围护结构变形计算的非线性土体弹簧模型及参数研究"讨论的答复[J]. 岩土工程学报, 2020, 42(12): 2351-2352.

    WANG Hongxin, LI Xueqiang, YANG Shifei, et al. Reply to discussion on\ "Nonlinear soil spring model and parameters for calculating deformation of retaining structure of foundation pits"[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2351-2352. (in Chinese)
    [9]
    胡琦, 凌道盛, 陈云敏. 基于Melan解的水平基床系数分析方法及工程运用[J]. 岩土力学, 2009, 30(01): 33-39.

    HU Qi, LING Daosheng, CHEN Yunmin. Analytical method and engineering application of horizontal coefficients of subgrade reaction based on Melan's solution[J]. Rock and Soil Mechanics, 2009, 30(01): 33-39. (in Chinese)
    [10]
    邓帅. 管廊基坑中PC组合钢管桩受力变形特性及计算方法研究[D]. 上海: 上海交通大学, 2020.

    DENG Shuai. Study on Deformation and Stiffness of PC Composite Steel Pile in Construction of Pile Gallery[D]. Shanghai: Shanghai Jiao Tong University, 2020. (in Chinese)
    [11]
    徐中华, 李靖, 王卫东. 基坑工程平面竖向弹性地基梁法中土的水平抗力比例系数反分析研究[J]. 岩土力学, 2014, 35(增刊2): 398-404, 411.

    XU Zhonghua, LI Jing, WANG Weidong. Back analysis of proportional coefficient of horizontal resistance in vertical elastic subgrade beam method for deep excavations[J]. Rock and Soil Mechanics, 2014, 35(S2): 398-404+411. (in Chinese)
    [12]
    赵香山. 基坑工程变形计算的土层参数确定方法分析[D]. 上海: 上海交通大学, 2015.

    ZHAO Xiangshan. Analysis of Determination Method of Soil Parameters for Deformation Calculation of Foundation Pit Engineering[D]. Shanghai: Shanghai Jiao Tong University, 2015. (in Chinese)
    [13]
    王卫东, 李青, 徐中华. 软土地层邻近隧道深基坑变形控制设计分析与实践[J]. 隧道建设(中英文), 2022, 42(2): 163-175.

    WANG Weidong, LI Qing, XU Zhonghua. Design and application of deformation control techniques for deep foundation pits adjacent to existing tunnels in soft soil[J]. Tunnel Construction, 2022, 42(2): 163-175. (in Chinese)
    [14]
    杨光华, 张文雨, 陈富强, 等. 软土基坑被动区土体不同加固宽度的m值计算方法研究[J]. 广东水利水电, 2020(2): 13-19.

    YANG Guanghua, ZHANG Wenyu, CHEN Fuqiang, et al. Study on calculation method of m-values for different widths of passive zone reinforcement in soft soil foundation pit[J]. Guangdong Water Resources and Hydropower, 2020(2): 13-19. (in Chinese)
    [15]
    BENZ T. Small Strain Stiffness of Soils and Its Numerical Consequences[D]. Stuttgart: University of Stuttgart, 2006.
    [16]
    建筑桩基技术规范: JGJ 94—2008[S]. 北京: 中国建筑工业出版社, 2008.

    Technical Code for Building Pile Foundations: JGJ 94—2008[S]. Beijing: China Architecture & Building Press, 2008. (in Chinese)
    [17]
    胡人礼. 桥梁桩基础分析和设计[M]. 北京: 中国铁道出版社, 1987.

    HU Renli. Analysis and Design of Bridge Pile Foundation[M]. Beijing: China Railway Publishing House, 1987. (in Chinese)
    [18]
    涂启柱. 旁压试验确定水平基床系数方法研究[J]. 铁道工程学报, 2018, 35(10): 20-26.

    TU Qizhu. Research on the testing method for determining the coefficient of horizontal subgrade reaction with the pressuremeter test[J]. Journal of Railway Engineering Society, 2018, 35(10): 20-26. (in Chinese)
    [19]
    铁路工程地质原位测试规程: TB 10018—2018[S]. 北京: 中国铁道出版社, 2018.

    Code for In-Site Testing of Railway Engineering Geology: TB 10018—2018[S]. Beijing: China Railway Publishing House, 2018. (in Chinese)
    [20]
    POETER E P, HILL M C. Documentation of UCODE: A Computer Code for Universal Inverse Modeling[M]. Denver, Colorado: DIANE Publishing, 1998.
    [21]
    POETER E P, HILL M C, LU D, et al. UCODE_2014, with New Capabilities to Define Parameters Unique to Predictions, Calculate Weights Using Simulated Values, Estimate Parameters with SVD, Evaluate Uncertainty with MCMC, and More[R]. Golden, Colorado: Integrated Groundwater Modeling Center (IGWMC) of the Colorado School of Mines, 2014.
    [22]
    FINNO R J, BLACKBURN J T, ROBOSKI J F. Three-dimensional effects for supported excavations in clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(1): 30-36. doi: 10.1061/(ASCE)1090-0241(2007)133:1(30)
    [23]
    楼春晖. 软土地区深开挖空间变形特性及环境影响分析[D]. 杭州: 浙江大学, 2019.

    LOU Chunhui. Investigation of Spatial Deformation Characteristics and Environmental Effects Due to Deep Excavation in Soft Soil Area[D]. Hangzhou: Zhejiang University, 2019. (in Chinese)
    [24]
    顾晓强, 吴瑞拓, 梁发云, 等. 上海土体小应变硬化模型整套参数取值方法及工程验证[J]. 岩土力学, 2021, 42(3): 833-845.

    GU Xiaoqiang, WU Ruituo, LIANG Fayun, et al. On HSS model parameters for Shanghai soils with engineering verification[J]. Rock and Soil Mechanics, 2021, 42(3): 833-845. (in Chinese)
    [25]
    OU C Y, CHOIU D C, WU T S. Three-dimensional finite element analysis of deep excavations[J]. Journal of Geotechnical Engineering, 1996, 122(5): 337-345. doi: 10.1061/(ASCE)0733-9410(1996)122:5(337)
    [26]
    TAN Y, WEI B. Observed behaviors of a long and deep excavation constructed by cut-and-cover technique in shanghai soft clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(1): 69-88. doi: 10.1061/(ASCE)GT.1943-5606.0000553
    [27]
    王浩然. 上海软土地区深基坑变形与环境影响预测方法研究[D]. 上海: 同济大学, 2012.

    WANG Haoran. Prediction of Deformation and Response of Adjacent Environment of Deep Excavations in Shanghai Soft Deposit[D]. Shanghai: Tongji University, 2012. (in Chinese)
    [28]
    徐中华. 上海地区支护结构与主体地下结构相结合的深基坑变形性状研究[D]. 上海: 上海交通大学, 2007.

    XU Zhonghua. Study on Deformation Behavior of Deep Foundation Pit Combined with Supporting Structure and Main Underground Structure in Shanghai Area[D]. Shanghai: Shanghai Jiao Tong University, 2007. (in Chinese)
    [29]
    王浩然, 徐中华. 复杂环境条件下的基坑工程设计与实测分析[J]. 地下空间与工程学报, 2011, 7(5): 968-976.

    WANG Haoran, XU Zhonghua. Design and monitoring of the deep excavation in complicated environment[J]. Chinese Journal of Underground Space and Engineering, 2011, 7(5): 968-976. (in Chinese)
    [30]
    王浩然, 王卫东, 徐中华. 基坑开挖对邻近建筑物影响的三维有限元分析[J]. 地下空间与工程学报, 2009, 5(增刊2): 1512-1517.

    WANG Haoran, WANG Weidong, XU Zhonghua. Three dimensional analysis of the influence of deep excavation on adjacent building[J]. Chinese Journal of Underground Space and Engineering, 5(S2): 1512-1517. (in Chinese)
    [31]
    刘征. 深基坑支护时间效应的有限差分法分析[D]. 上海: 同济大学, 2005.

    LIU Zheng. Analysis of Time Effect of Deep Excavation by Finite Difference Method[D]. Shanghai: Tongji University, 2005. (in Chinese)
    [32]
    陈洋. 深基坑开挖数值模拟与实测研究[D]. 西安: 西安建筑科技大学, 1999.

    CHEN Yang. Numerical Simulation and Measurement of Deep Excavation[D]. Xi'an: Xi'an University of Architecture and Technology, 1999. (in Chinese)
    [33]
    赵锡宏, 陈志明, 胡中雄, 等. 高层建筑深基坑围护工程实践与分析[M]. 上海: 同济大学出版社, 1996.

    ZHAO Xihong, CHEN Zhiming, HU Zhongxiong, et al. Practice and Analysis of Deep Foundation Pit Enclosure Engineering of High-Rise Building[M]. Shanghai: Tongji University Press, 1996. (in Chinese)).
    [34]
    李进军, 王卫东, 邸国恩, 等. 基坑工程对邻近建筑物附加变形影响的分析[J]. 岩土力学, 2007, 28(增刊1): 623-629.

    LI Jingjun, WANG Weidong, DI Guo'en, et al. Analysis of the influence of excavation engineering on additional deformation of adjacent buildings[J]. Rock and Soil Mechanics, 2007, 28(S1): 623-629. (in Chinese)
    [35]
    TAN Y, ZHU H H, PENG F L, et al. Characterization of semi-top-down excavation for subway station in Shanghai soft ground[J]. Tunnelling and Underground Space Technology, 2017, 68(1): 244-261.
    [36]
    王国粹, 梁志荣, 魏祥. 上海中山医院基坑逆作法施工时间效应分析[J]. 岩土力学, 2014, 35(增刊2): 495-500.

    (WANG Guocui, LIANG Zhirong, WEI Xiang. Study of time effect on top-down excavation of Shanghai Zhongshan Hospital[J]. Rock and Soil Mechanics, 2014, 35(S2): 495-500. (in Chinese
    [37]
    李雪强. 基坑围护结构变形计算中的非线性土体弹簧及工程应用[D]. 上海: 上海大学, 2020.

    LI Xueqiang. Nonlinear Soil Spring in Deformation Calculation of Foundation Pit Retaining Structure and its Engineering Application[D]. Shanghai: Shanghai University, 2020. (in Chinese)
    [38]
    顾开云, 许磊. 复杂条件下基坑变形控制——亚龙总部大楼基坑工程设计研究[J]. 岩土工程学报, 2006, 28(增刊1): 1577-1581.

    GU Kaiyun, XU Lei. Displacement control under deep foundation pits complicated conditions—Design of the foundation pit of Yalong General Headquarters Building[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(S1): 1577-1581. (in Chinese)
    [39]
    王健. 上海某基坑SMW围护的实测与分析[J]. 工业建筑, 2001, 31(2): 27-30.

    WANG Jian. Measurement and analysis of internal forces and deformations for a certain deep excavation SMW supporting structure in Shanghai[J]. Industrial Construction, 2001, 31(2): 27-30. (in Chinese)
    [40]
    陈光敬, 胡中雄, 于立. 采用分层地基系数的多支撑支护结构分析[J]. 岩土力学, 1997, 18(4): 1-7.

    CHEN Guangjing, HU Zhongxiong, YU Li. Analysis of multi-braced retaining structure for layered soil based upon soil coefficient method[J]. Rock and Soil Mechanics, 1997, 18(4): 1-7. (in Chinese)
    [41]
    史世雍. 软土地区深基坑支护体系安全性状动态分析[D]. 上海: 同济大学, 2007.

    SHI Shiyong. Dynamic Analysis of Safety Characteristics of Deep Foundation Pit Supporting System in Soft Soil Area[D]. Shanghai: Tongji University, 2007. (in Chinese)
    [42]
    刘燕, 刘国彬, 孙晓玲, 等. 考虑时空效应的软土地区深基坑变形分析[J]. 岩土工程学报, 2006, 28(增刊1): 1433-1436.

    LIU Yan, LIU Guobin, SUN Xiaobin, et al. Analysis of deformation laws by using the rule of time-space effect in soft soil excavation[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(S1): 1433-1436. (in Chinese)

Catalog

    Article views (347) PDF downloads (95) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return