Citation: | ZHOU Yanguo, ZHOU Xinhui, SANG Yijia, SHI Anchi, CHEN Yunmin. Shear wave velocity-based evaluation of liquefaction resistance of in-situ sand with aging effects[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 19-24. DOI: 10.11779/CJGE2023S20047 |
[1] |
SEED H B, IDRISS I M, ARANGO I. Evaluation of liquefaction potential using field performance data[J]. Journal of Geotechnical Engineering, 1983, 109(3): 458-482. doi: 10.1061/(ASCE)0733-9410(1983)109:3(458)
|
[2] |
YOUD T L, IDRISS I M. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(4): 297-313. doi: 10.1061/(ASCE)1090-0241(2001)127:4(297)
|
[3] |
曹振中, 袁晓铭. 砂砾土液化的剪切波速判别方法[J]. 岩石力学与工程学报, 2010, 29(5): 943-951. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005013.htm
CAO Zhenzhong, YUAN Xiaoming. Shear wave velocity-based approach for evaluating gravel soils liquefaction[J]. Chinese Journal of Rock Mechanics and Engineering. 2010, 29(5): 943-951. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005013.htm
|
[4] |
陈国兴, 孙苏豫, 吴琪, 等. 基于剪切波速的砂砾土地震液化评价新方法[J]. 岩土工程学报, 2022, 44(10): 1763-1771. doi: 10.11779/CJGE202210001
CHEN Guoxing, SUN Suyu, WU Qi, et al. Shear wave velocity-based new procedure for assessing seismic liquefaction triggering of sand-gravel soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1763-1771. (in Chinese) doi: 10.11779/CJGE202210001
|
[5] |
孙锐, 袁晓铭. 适于不同深度土层液化的剪切波速判别公式[J]. 岩土工程学报, 2019, 41(3): 439-447. doi: 10.11779/CJGE201903005
SUN Rui, YUAN Xiaoming. Depth-consistent vs-based approach for soil liquefaction evaluation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 439-447. (in Chinese) doi: 10.11779/CJGE201903005
|
[6] |
CHEN G X, WU Q, ZHAO K, et al. A binary packing material–based procedure for evaluating soil liquefaction triggering during earthquakes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(6): 04020040. doi: 10.1061/(ASCE)GT.1943-5606.0002263
|
[7] |
ZHOU Y G, CHEN Y M. Laboratory investigation on assessing liquefaction resistance of sandy soils by shear wave velocity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(8): 959-972. doi: 10.1061/(ASCE)1090-0241(2007)133:8(959)
|
[8] |
ZHOU Y G, CHEN Y M, SHAMOTO Y. Verification of the soil-type specific correlation between liquefaction resistance and shear-wave velocity of sand by dynamic centrifuge test[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(1): 165-177. doi: 10.1061/(ASCE)GT.1943-5606.0000193
|
[9] |
赵倩玉, 孙锐. 适用于新疆场地的剪切波速液化判别公式[J]. 岩土工程学报, 2013, 35(增刊2): 383-388. http://cge.nhri.cn/cn/article/id/15413
ZHAO Qianyu, SUN Rui. A shear-wave velocity discrimination formula for liquefaction applicable to Xinjiang region[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 383-388. (in Chinese) http://cge.nhri.cn/cn/article/id/15413
|
[10] |
CHEN G X, KONG M Y, KHOSHNEVISAN S, et al. Calibration of Vs-based empirical models for assessing soil liquefaction potential using expanded database[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(2): 945-957. doi: 10.1007/s10064-017-1146-9
|
[11] |
周燕国, 丁海军, 陈云敏, 等. 基于原位测试指标的砂土时间效应定量表征初步研究[J]. 岩土工程学报, 2015, 37(11): 2000-2006. doi: 10.11779/CJGE201511009
ZHOU Yanguo, DING Haijun, CHEN Yunmin, et al. Characterization of ageing effect of sands based on field testing indices[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2000-2006. (in Chinese) doi: 10.11779/CJGE201511009
|
[12] |
陈光仔, 蔡袁强, 王军, 等. 时间效应对砂土小应变动力特性影响及其细观机制研究[J]. 岩石力学与工程学报, 2013, 32(增刊2): 4215-4223. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2151.htm
CHEN Guangzai, CAI Yuanqiang, WANG Jun, et al. Research of dynamic properties changes and microscopic mechnism of aging sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 4215-4223. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2151.htm
|
[13] |
丁海军. 砂土液化时间效应的剪切波速表征研究[D]. 杭州: 浙江大学, 2015.
DING Haijun. Shear Wave Velocity-Based Characterization of Aging Effect on Soil Liquefaction[D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
|
[14] |
周燕国, 沈涛, 王越, 等. 基督城易液化场地震后小应变剪切刚度演化规律研究[J]. 岩土工程学报, 2020, 42(8): 1411-1417. doi: 10.11779/CJGE202008005
ZHOU Yanguo, SHEN Tao, WANG Yue, et al. Post-earthquake evolution of small-strain shear stiffness at liquefiable deposit in Christchurch[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1411-1417. (in Chinese) doi: 10.11779/CJGE202008005
|
[15] |
LEON E, GASSMAN S L, TALWANI P. Accounting for soil aging when assessing liquefaction potential[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(3): 363-377. doi: 10.1061/(ASCE)1090-0241(2006)132:3(363)
|
[16] |
ANDRUS R D, HAYATI H, MOHANAN N P. Correcting liquefaction resistance for aged sands using measured to estimated velocity ratio[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(6): 735-744. doi: 10.1061/(ASCE)GT.1943-5606.0000025
|
[17] |
BWAMBALE B, ANDRUS R D. State of the art in the assessment of aging effects on soil liquefaction[J]. Soil Dynamics and Earthquake Engineering, 2019, 125: 105658. doi: 10.1016/j.soildyn.2019.04.032
|
[18] |
ANDRUS R D, STOKOE K H. Liquefaction resistance of soils from shear-wave velocity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(11): 1015-1025. doi: 10.1061/(ASCE)1090-0241(2000)126:11(1015)
|
[19] |
袁晓铭, 卢坤玉, 林颖, 等. 哈尔滨地区砂土层N-V关系特征曲线及对比研究[J]. 地震工程与工程振动, 2020, 40(6): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC202006001.htm
YUAN Xiaoming, LU Kunyu, LIN Ying, et al. The N-V relationship curve of sand layers in Harbin region and its comparison with those in other regions of China[J]. Earthquake Engineering and Engineering Dynamics, 2020, 40(6): 1-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC202006001.htm
|
[20] |
BRADLEY K, MALLICK R, ANDIKAGUMI H, et al. Earthquake-triggered 2018 Palu Valley landslides enabled by wet rice cultivation[J]. Nature Geoscience, 2019, 12(11): 935-939. doi: 10.1038/s41561-019-0444-1
|
[21] |
董菲蕃, 陈国兴, 金丹丹. 福建沿海3个盆地的土层剪切波速与深度的统计关系[J]. 岩土工程学报, 2013, 35(增刊2): 145-151. http://cge.nhri.cn/cn/article/id/15372
DONG Feifan, CHEN Guoxing, JIN Dandan. Statistical relation between shear wave velocity and depth of soils in three basins in coastal area of Fujian province[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 145-151. (in Chinese) http://cge.nhri.cn/cn/article/id/15372
|
[22] |
王琦, 刘红帅, 郑桐, 等. 天津地区覆盖土层剪切波速与埋深的相关性分析[J]. 地震工程与工程振动, 2018, 38(6): 190-201. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201806022.htm
WANG Qi, LIU Hongshuai, ZHENG Tong, et al. Correlation analysis between shear wave velocity and depth of covering soils in Tianjin[J]. Earthquake Engineering and Engineering Dynamics, 2018, 38(6): 190-201. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201806022.htm
|
[23] |
LIAO S S C, WHITMAN R V. Overburden correction factors for SPT in sand[J]. Journal of Geotechnical Engineering, 1986, 112(3): 373-377. doi: 10.1061/(ASCE)0733-9410(1986)112:3(373)
|
[24] |
中华人民共和国住房和城乡建设部. 建筑抗震设计规范: GB 50011—2016[S]. 北京: 中国建筑工业出版社, 2016.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for Investigation of Geotechnical Engineering: GB 50021—22001[S]. Beijing: China Architecture and Building Press, 2016. (in Chinese)
|