• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Yanguo, ZHOU Xinhui, SANG Yijia, SHI Anchi, CHEN Yunmin. Shear wave velocity-based evaluation of liquefaction resistance of in-situ sand with aging effects[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 19-24. DOI: 10.11779/CJGE2023S20047
Citation: ZHOU Yanguo, ZHOU Xinhui, SANG Yijia, SHI Anchi, CHEN Yunmin. Shear wave velocity-based evaluation of liquefaction resistance of in-situ sand with aging effects[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 19-24. DOI: 10.11779/CJGE2023S20047

Shear wave velocity-based evaluation of liquefaction resistance of in-situ sand with aging effects

More Information
  • Received Date: November 29, 2023
  • Available Online: April 19, 2024
  • The shear wave velocity is one of the commonly used parameters to evaluate liquefaction resistance of sandy soils. In this study, based on the initial liquefaction criterion-based shear wave velocity characterization model (i.e., the "Zhou-Chen model"), two correction parameters are intruduced to consider the aging effects to correct the field measured shear wave velocity and the liquefaction resistance of reconstituted sand, respectively, so that the "Zhou-Chen model" can be used to evaluate the liquefaction resistance of in-situ sandy soils. In an engineering case from Qiaojia County, Yunnan Province, both field measurements of shear wave velocity and laboratory testings are conducted to determine the parameters of the "Zhou-Chen model", and then a simplified procedure to evaluate liquefaction potential using the field shear wave velocity measurement is established. This simplified procedure is then used to evaluate the liquefaction potential of the engineering site, and the results are consistesnt with those by other methods. The proposed characterization model with further consideration of the aging effects provides a promising way to evaluate the liquefaction resistance of in-situ sandy soils with the ageing effects.
  • [1]
    SEED H B, IDRISS I M, ARANGO I. Evaluation of liquefaction potential using field performance data[J]. Journal of Geotechnical Engineering, 1983, 109(3): 458-482. doi: 10.1061/(ASCE)0733-9410(1983)109:3(458)
    [2]
    YOUD T L, IDRISS I M. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(4): 297-313. doi: 10.1061/(ASCE)1090-0241(2001)127:4(297)
    [3]
    曹振中, 袁晓铭. 砂砾土液化的剪切波速判别方法[J]. 岩石力学与工程学报, 2010, 29(5): 943-951. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005013.htm

    CAO Zhenzhong, YUAN Xiaoming. Shear wave velocity-based approach for evaluating gravel soils liquefaction[J]. Chinese Journal of Rock Mechanics and Engineering. 2010, 29(5): 943-951. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005013.htm
    [4]
    陈国兴, 孙苏豫, 吴琪, 等. 基于剪切波速的砂砾土地震液化评价新方法[J]. 岩土工程学报, 2022, 44(10): 1763-1771. doi: 10.11779/CJGE202210001

    CHEN Guoxing, SUN Suyu, WU Qi, et al. Shear wave velocity-based new procedure for assessing seismic liquefaction triggering of sand-gravel soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1763-1771. (in Chinese) doi: 10.11779/CJGE202210001
    [5]
    孙锐, 袁晓铭. 适于不同深度土层液化的剪切波速判别公式[J]. 岩土工程学报, 2019, 41(3): 439-447. doi: 10.11779/CJGE201903005

    SUN Rui, YUAN Xiaoming. Depth-consistent vs-based approach for soil liquefaction evaluation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 439-447. (in Chinese) doi: 10.11779/CJGE201903005
    [6]
    CHEN G X, WU Q, ZHAO K, et al. A binary packing material–based procedure for evaluating soil liquefaction triggering during earthquakes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(6): 04020040. doi: 10.1061/(ASCE)GT.1943-5606.0002263
    [7]
    ZHOU Y G, CHEN Y M. Laboratory investigation on assessing liquefaction resistance of sandy soils by shear wave velocity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(8): 959-972. doi: 10.1061/(ASCE)1090-0241(2007)133:8(959)
    [8]
    ZHOU Y G, CHEN Y M, SHAMOTO Y. Verification of the soil-type specific correlation between liquefaction resistance and shear-wave velocity of sand by dynamic centrifuge test[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(1): 165-177. doi: 10.1061/(ASCE)GT.1943-5606.0000193
    [9]
    赵倩玉, 孙锐. 适用于新疆场地的剪切波速液化判别公式[J]. 岩土工程学报, 2013, 35(增刊2): 383-388. http://cge.nhri.cn/cn/article/id/15413

    ZHAO Qianyu, SUN Rui. A shear-wave velocity discrimination formula for liquefaction applicable to Xinjiang region[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 383-388. (in Chinese) http://cge.nhri.cn/cn/article/id/15413
    [10]
    CHEN G X, KONG M Y, KHOSHNEVISAN S, et al. Calibration of Vs-based empirical models for assessing soil liquefaction potential using expanded database[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(2): 945-957. doi: 10.1007/s10064-017-1146-9
    [11]
    周燕国, 丁海军, 陈云敏, 等. 基于原位测试指标的砂土时间效应定量表征初步研究[J]. 岩土工程学报, 2015, 37(11): 2000-2006. doi: 10.11779/CJGE201511009

    ZHOU Yanguo, DING Haijun, CHEN Yunmin, et al. Characterization of ageing effect of sands based on field testing indices[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 2000-2006. (in Chinese) doi: 10.11779/CJGE201511009
    [12]
    陈光仔, 蔡袁强, 王军, 等. 时间效应对砂土小应变动力特性影响及其细观机制研究[J]. 岩石力学与工程学报, 2013, 32(增刊2): 4215-4223. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2151.htm

    CHEN Guangzai, CAI Yuanqiang, WANG Jun, et al. Research of dynamic properties changes and microscopic mechnism of aging sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 4215-4223. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2151.htm
    [13]
    丁海军. 砂土液化时间效应的剪切波速表征研究[D]. 杭州: 浙江大学, 2015.

    DING Haijun. Shear Wave Velocity-Based Characterization of Aging Effect on Soil Liquefaction[D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
    [14]
    周燕国, 沈涛, 王越, 等. 基督城易液化场地震后小应变剪切刚度演化规律研究[J]. 岩土工程学报, 2020, 42(8): 1411-1417. doi: 10.11779/CJGE202008005

    ZHOU Yanguo, SHEN Tao, WANG Yue, et al. Post-earthquake evolution of small-strain shear stiffness at liquefiable deposit in Christchurch[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1411-1417. (in Chinese) doi: 10.11779/CJGE202008005
    [15]
    LEON E, GASSMAN S L, TALWANI P. Accounting for soil aging when assessing liquefaction potential[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(3): 363-377. doi: 10.1061/(ASCE)1090-0241(2006)132:3(363)
    [16]
    ANDRUS R D, HAYATI H, MOHANAN N P. Correcting liquefaction resistance for aged sands using measured to estimated velocity ratio[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(6): 735-744. doi: 10.1061/(ASCE)GT.1943-5606.0000025
    [17]
    BWAMBALE B, ANDRUS R D. State of the art in the assessment of aging effects on soil liquefaction[J]. Soil Dynamics and Earthquake Engineering, 2019, 125: 105658. doi: 10.1016/j.soildyn.2019.04.032
    [18]
    ANDRUS R D, STOKOE K H. Liquefaction resistance of soils from shear-wave velocity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(11): 1015-1025. doi: 10.1061/(ASCE)1090-0241(2000)126:11(1015)
    [19]
    袁晓铭, 卢坤玉, 林颖, 等. 哈尔滨地区砂土层N-V关系特征曲线及对比研究[J]. 地震工程与工程振动, 2020, 40(6): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC202006001.htm

    YUAN Xiaoming, LU Kunyu, LIN Ying, et al. The N-V relationship curve of sand layers in Harbin region and its comparison with those in other regions of China[J]. Earthquake Engineering and Engineering Dynamics, 2020, 40(6): 1-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC202006001.htm
    [20]
    BRADLEY K, MALLICK R, ANDIKAGUMI H, et al. Earthquake-triggered 2018 Palu Valley landslides enabled by wet rice cultivation[J]. Nature Geoscience, 2019, 12(11): 935-939. doi: 10.1038/s41561-019-0444-1
    [21]
    董菲蕃, 陈国兴, 金丹丹. 福建沿海3个盆地的土层剪切波速与深度的统计关系[J]. 岩土工程学报, 2013, 35(增刊2): 145-151. http://cge.nhri.cn/cn/article/id/15372

    DONG Feifan, CHEN Guoxing, JIN Dandan. Statistical relation between shear wave velocity and depth of soils in three basins in coastal area of Fujian province[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 145-151. (in Chinese) http://cge.nhri.cn/cn/article/id/15372
    [22]
    王琦, 刘红帅, 郑桐, 等. 天津地区覆盖土层剪切波速与埋深的相关性分析[J]. 地震工程与工程振动, 2018, 38(6): 190-201. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201806022.htm

    WANG Qi, LIU Hongshuai, ZHENG Tong, et al. Correlation analysis between shear wave velocity and depth of covering soils in Tianjin[J]. Earthquake Engineering and Engineering Dynamics, 2018, 38(6): 190-201. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201806022.htm
    [23]
    LIAO S S C, WHITMAN R V. Overburden correction factors for SPT in sand[J]. Journal of Geotechnical Engineering, 1986, 112(3): 373-377. doi: 10.1061/(ASCE)0733-9410(1986)112:3(373)
    [24]
    中华人民共和国住房和城乡建设部. 建筑抗震设计规范: GB 50011—2016[S]. 北京: 中国建筑工业出版社, 2016.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for Investigation of Geotechnical Engineering: GB 50021—22001[S]. Beijing: China Architecture and Building Press, 2016. (in Chinese)

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return