• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Qian, LIU Zhaozhao, WANG Lanmin, WANG Yan, MA Jing, HU Xuefeng, ZHONG Xiumei. Dynamic constitutive relationship of lignin-modified loess[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 235-240. DOI: 10.11779/CJGE2023S20034
Citation: WANG Qian, LIU Zhaozhao, WANG Lanmin, WANG Yan, MA Jing, HU Xuefeng, ZHONG Xiumei. Dynamic constitutive relationship of lignin-modified loess[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 235-240. DOI: 10.11779/CJGE2023S20034

Dynamic constitutive relationship of lignin-modified loess

More Information
  • Received Date: November 29, 2023
  • Available Online: April 19, 2024
  • To effectively improve the dynamic vulnerability of loess, lignin is selected as the environmentally friendly material to enhance the loess. Based on the dynamic triaxial tests, the dynamic constitutive relationship of lignin-modified loess is studied. A Hardin-Drnevich modified model considering the lignin content is discussed. The results show that the backbone curves of the modified loess with different lignin contents have significant differences. Under the same dynamic stress, the dynamic strain of modified loess with lignin content of 1% is the smallest. The hysteresis curves and the damping ratio-dynamic strain curves of the modified loess with different lignin contents have significant differences. The long axis of the hysteretic cycle of modified loess with lignin content of 1% is shorter, the shape is narrower, and the area is smaller. The damping ratio of the modified loess increases firstly with the increase of the lignin content, and it has a peak when the lignin content is 1%. The dynamic constitutive relationship of the lignin-modified loess conforms to the Hardin-Drnevich hyperbolic model, and the lignin content m can be introduced into the model to obtain a well-correlated Hardin-Drnevich modified model. The lignin can effectively improve the dynamic deformation resistance, seismic performance and dynamic stiffness of loess. However, the continuous increase of lignin content doesn't lead to the continuous improvement of dynamic characteristics.
  • [1]
    王兰民, 石玉成, 刘旭, 等. 黄土动力学[M]. 北京: 地震出版社, 2003.

    WANG Lanmin, SHI Yucheng, LIU Xu, et al. Loess Dynamics[M]. Beijing: Seismological Press, 2003. (in Chinese)
    [2]
    蒋挺大. 木质素[M]. 2版. 北京: 化学工业出版社, 2009.

    JIANG Tingda. Lignin[M]. 2nd ed. Beijing: Chemical Industry Press, 2009. (in Chinese)
    [3]
    侯鑫, 马巍, 李国玉, 等. 木质素磺酸盐对兰州黄土力学性质的影响[J]. 岩土力学, 2017, 38(增刊2): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2003.htm

    HOU Xin, MA Wei, LI Guoyu, et al. Influence of lignosulfonate on mechanical properties of Lanzhou loess[J]. Rock and Soil Mechanics, 2017, 38(S2): 18-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2003.htm
    [4]
    贺智强, 樊恒辉, 王军强, 等. 木质素加固黄土的工程性能试验研究[J]. 岩土力学, 2017, 38(3): 731-739. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201703015.htm

    HE Zhiqiang, FAN Henghui, WANG Junqiang, et al. Experimental study of engineering properties of loess reinforced by lignosulfonate[J]. Rock and Soil Mechanics, 2017, 38(3): 731-739. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201703015.htm
    [5]
    LIU W, WANG J, LIN G C, et al. Microscopic mechanism affecting shear strength in lignin-treated loess samples[J]. Advances in Materials Science and Engineering, 2019, 2019: 7126040.
    [6]
    钟秀梅, 刘伟, 刘钊钊. 不同制样方法对木质素改良黄土力学特性影响[J]. 世界地震工程, 2020, 36(1): 197-204. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC202001025.htm

    ZHONG Xiumei, LIU Wei, LIU Zhaozhao. Effect of different sample preparation methods on mechanical properties of lignin improved loess[J]. World Earthquake Engineering, 2020, 36(1): 197-204. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC202001025.htm
    [7]
    刘钊钊, 高中南, 马紫娟, 等. 木质素改良黄土孔隙细观特征研究[J]. 工程地质学报, 2019, 27(增刊): 557-564. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ201910001079.htm

    LIU Zhazhao, GAO Zhongnan, MA Zijuan, et al. Research on pore microscopic characteristics of lignin-modified loess[J]. Journal of Engineering Geology, 2019, 27(S0): 557-564. (in Chinese) https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ201910001079.htm
    [8]
    CAI G J, ZHANG T, LIU S Y, et al. Stabilization mechanism and effect evaluation of stabilized silt with lignin based on laboratory data[J]. Marine Georesources \ & Geotechnology, 2016, 34(4): 331-340.
    [9]
    ZHANG T, CAI G J, LIU S Y. Assessment of mechanical properties in recycled lignin-stabilized silty soil as base fill material[J]. Journal of Cleaner Production, 2018, 172: 1788-1799. doi: 10.1016/j.jclepro.2017.12.011
    [10]
    ZHANG T, CAI G J, LIU S Y. Application of lignin-stabilized silty soil in highway subgrade: a macroscale laboratory study[J]. Journal of Materials in Civil Engineering, 2018, 30(4): 04018034. doi: 10.1061/(ASCE)MT.1943-5533.0002203
    [11]
    土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [12]
    刘钊钊. 木质素改良黄土力学特性及加固机理研究[D]. 兰州: 兰州大学, 2020.

    LIU Zhaozhao. Mechanical Properties and Reinforcement Mechanism of Lignin- Modified Loess[D]. Lanzhou: Lanzhou University, 2020. (in Chinese)
    [13]
    HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: design equations and curves[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(7): 667-692. doi: 10.1061/JSFEAQ.0001760
  • Related Articles

    [1]CUI Hao, LIU Hanlong, XIAO Yang. Cyclic shearing characteristics of calcareous sand-snake skin-inspired interfaces[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 1014-1024. DOI: 10.11779/CJGE20231283
    [2]XIAO Xing, JI Dongwei, HANG Tianzhu, WU Qi, CHEN Guoxing. Cyclic threshold shear strains for pore water pressure generation and stiffness degradation in marine clay[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 123-127. DOI: 10.11779/CJGE2023S10005
    [3]WANG Gang, WANG Pengju, WANG Changsheng, JIANG Yujing, LUAN Hengjie, HUANG Na. Shear mechanical behaviors of ceramic proppant-infilled sandstone fractures under constant normal stiffness boundary conditions[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1790-1800. DOI: 10.11779/CJGE20220544
    [4]ZHOU Yan-guo, SHEN Tao, WANG Yue, DING Hai-jun. Post-earthquake evolution of small-strain shear stiffness at liquefiable deposit in Christchurch[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1411-1417. DOI: 10.11779/CJGE202008005
    [5]WANG Teng, ZHANG Zhe. Experimental studies on cyclic shear behavior of steel-silt interface under constant normal stiffness[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1921-1927. DOI: 10.11779/CJGE201910017
    [6]LIU Peng, DING Wen-qi, YANG Bo. Model for stiffness of joints of immersed tube tunnel[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 133-139.
    [7]LIU Jun-wei, ZHANG Zhong-miao, YU Feng, ZHAO Yu-bo. Estimation of friction fatigue for preformed piles based on constant normal stiffness shear test[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 725-729.
    [8]FENG Da-kuo, HOU Wen-jun, ZHANG Jian-min. Experimental study on cyclic behavior of gravel-structure interface with stress-control mode under constant normal stiffness[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 846.
    [9]WANG Xudong, LIU Yuyi, ZAI Jinmin, ZHU Hongbo. Elastic-plastic solution for axially loaded single pile considering variation of shear stiffness coefficient[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12): 1758-1762.
    [10]Pan Shisheng, Hou Xueyuan. Computation of Pile Head Stiffness[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(1): 1-6.

Catalog

    Article views (99) PDF downloads (21) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return