Citation: | WANG Qian, LIU Zhaozhao, WANG Lanmin, WANG Yan, MA Jing, HU Xuefeng, ZHONG Xiumei. Dynamic constitutive relationship of lignin-modified loess[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 235-240. DOI: 10.11779/CJGE2023S20034 |
[1] |
王兰民, 石玉成, 刘旭, 等. 黄土动力学[M]. 北京: 地震出版社, 2003.
WANG Lanmin, SHI Yucheng, LIU Xu, et al. Loess Dynamics[M]. Beijing: Seismological Press, 2003. (in Chinese)
|
[2] |
蒋挺大. 木质素[M]. 2版. 北京: 化学工业出版社, 2009.
JIANG Tingda. Lignin[M]. 2nd ed. Beijing: Chemical Industry Press, 2009. (in Chinese)
|
[3] |
侯鑫, 马巍, 李国玉, 等. 木质素磺酸盐对兰州黄土力学性质的影响[J]. 岩土力学, 2017, 38(增刊2): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2003.htm
HOU Xin, MA Wei, LI Guoyu, et al. Influence of lignosulfonate on mechanical properties of Lanzhou loess[J]. Rock and Soil Mechanics, 2017, 38(S2): 18-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2003.htm
|
[4] |
贺智强, 樊恒辉, 王军强, 等. 木质素加固黄土的工程性能试验研究[J]. 岩土力学, 2017, 38(3): 731-739. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201703015.htm
HE Zhiqiang, FAN Henghui, WANG Junqiang, et al. Experimental study of engineering properties of loess reinforced by lignosulfonate[J]. Rock and Soil Mechanics, 2017, 38(3): 731-739. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201703015.htm
|
[5] |
LIU W, WANG J, LIN G C, et al. Microscopic mechanism affecting shear strength in lignin-treated loess samples[J]. Advances in Materials Science and Engineering, 2019, 2019: 7126040.
|
[6] |
钟秀梅, 刘伟, 刘钊钊. 不同制样方法对木质素改良黄土力学特性影响[J]. 世界地震工程, 2020, 36(1): 197-204. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC202001025.htm
ZHONG Xiumei, LIU Wei, LIU Zhaozhao. Effect of different sample preparation methods on mechanical properties of lignin improved loess[J]. World Earthquake Engineering, 2020, 36(1): 197-204. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC202001025.htm
|
[7] |
刘钊钊, 高中南, 马紫娟, 等. 木质素改良黄土孔隙细观特征研究[J]. 工程地质学报, 2019, 27(增刊): 557-564. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ201910001079.htm
LIU Zhazhao, GAO Zhongnan, MA Zijuan, et al. Research on pore microscopic characteristics of lignin-modified loess[J]. Journal of Engineering Geology, 2019, 27(S0): 557-564. (in Chinese) https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCDZ201910001079.htm
|
[8] |
CAI G J, ZHANG T, LIU S Y, et al. Stabilization mechanism and effect evaluation of stabilized silt with lignin based on laboratory data[J]. Marine Georesources \ & Geotechnology, 2016, 34(4): 331-340.
|
[9] |
ZHANG T, CAI G J, LIU S Y. Assessment of mechanical properties in recycled lignin-stabilized silty soil as base fill material[J]. Journal of Cleaner Production, 2018, 172: 1788-1799. doi: 10.1016/j.jclepro.2017.12.011
|
[10] |
ZHANG T, CAI G J, LIU S Y. Application of lignin-stabilized silty soil in highway subgrade: a macroscale laboratory study[J]. Journal of Materials in Civil Engineering, 2018, 30(4): 04018034. doi: 10.1061/(ASCE)MT.1943-5533.0002203
|
[11] |
土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.
Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
|
[12] |
刘钊钊. 木质素改良黄土力学特性及加固机理研究[D]. 兰州: 兰州大学, 2020.
LIU Zhaozhao. Mechanical Properties and Reinforcement Mechanism of Lignin- Modified Loess[D]. Lanzhou: Lanzhou University, 2020. (in Chinese)
|
[13] |
HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: design equations and curves[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(7): 667-692. doi: 10.1061/JSFEAQ.0001760
|
[1] | CUI Hao, LIU Hanlong, XIAO Yang. Cyclic shearing characteristics of calcareous sand-snake skin-inspired interfaces[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 1014-1024. DOI: 10.11779/CJGE20231283 |
[2] | XIAO Xing, JI Dongwei, HANG Tianzhu, WU Qi, CHEN Guoxing. Cyclic threshold shear strains for pore water pressure generation and stiffness degradation in marine clay[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 123-127. DOI: 10.11779/CJGE2023S10005 |
[3] | WANG Gang, WANG Pengju, WANG Changsheng, JIANG Yujing, LUAN Hengjie, HUANG Na. Shear mechanical behaviors of ceramic proppant-infilled sandstone fractures under constant normal stiffness boundary conditions[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1790-1800. DOI: 10.11779/CJGE20220544 |
[4] | ZHOU Yan-guo, SHEN Tao, WANG Yue, DING Hai-jun. Post-earthquake evolution of small-strain shear stiffness at liquefiable deposit in Christchurch[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1411-1417. DOI: 10.11779/CJGE202008005 |
[5] | WANG Teng, ZHANG Zhe. Experimental studies on cyclic shear behavior of steel-silt interface under constant normal stiffness[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1921-1927. DOI: 10.11779/CJGE201910017 |
[6] | LIU Peng, DING Wen-qi, YANG Bo. Model for stiffness of joints of immersed tube tunnel[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 133-139. |
[7] | LIU Jun-wei, ZHANG Zhong-miao, YU Feng, ZHAO Yu-bo. Estimation of friction fatigue for preformed piles based on constant normal stiffness shear test[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 725-729. |
[8] | FENG Da-kuo, HOU Wen-jun, ZHANG Jian-min. Experimental study on cyclic behavior of gravel-structure interface with stress-control mode under constant normal stiffness[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 846. |
[9] | WANG Xudong, LIU Yuyi, ZAI Jinmin, ZHU Hongbo. Elastic-plastic solution for axially loaded single pile considering variation of shear stiffness coefficient[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12): 1758-1762. |
[10] | Pan Shisheng, Hou Xueyuan. Computation of Pile Head Stiffness[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(1): 1-6. |