• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Xinyu, CHI Mingjie, CHEN Xueliang. Distribution characteristics of dynamic parameter curves of different soils and their effects on ground motion[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 229-234. DOI: 10.11779/CJGE2023S20032
Citation: LIU Xinyu, CHI Mingjie, CHEN Xueliang. Distribution characteristics of dynamic parameter curves of different soils and their effects on ground motion[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 229-234. DOI: 10.11779/CJGE2023S20032

Distribution characteristics of dynamic parameter curves of different soils and their effects on ground motion

More Information
  • Received Date: November 29, 2023
  • Available Online: April 19, 2024
  • The dynamic shear modulus ratio and damping ratio are the important dynamic parameters that characterize the nonlinear characteristics of soils, and are also one of the important factors affecting the seismic response characteristics of the site. The statistical analysis on common soil types in multiple literatures is conducted, and obtains the corresponding distribution characteristics of dynamic parameter curves of soils are obtained. Based on this, the influence characteristics and laws of the distribution characteristics of dynamic shear modulus ratio and damping ratio curves of soils on site effects are studied. The research results indicate that there is a certain degree of difference between the average and recommended values of the two dynamic curves of various types of soils, but the overall trend is consistent. Among them, the distribution of the two dynamic curves of soil types such as sand, clay, gravel soil and muddy soil has their own characteristics. Due to the combined influences of the dynamic shear modulus ratio and damping ratio, the site effects of each component of seismic motion exhibit different characteristics, generally manifested as low-frequency amplification effects and high-frequency filtering effects. The soil types with different distribution characteristics of dynamic shear modulus ratio and damping ratio have different degrees of influences on the two effects.
  • [1]
    陈国兴. 岩土地震工程学[M]. 北京: 科学出版社, 2007: 150-151.

    CHEN Guoxing. Geotechnical Earthquake Engineering[M]. Beijing: Science Press, 2007: 150-151. in Chinese
    [2]
    袁晓铭, 孙锐, 孙静, 等. 常规土类动剪切模量比和阻尼比试验研究[J]. 地震工程与工程振动, 2000, 20(4): 133-139. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200004021.htm

    YUAN Xiaoming, SUN Rui, SUN Jing, et al. Laboratory experimental study on dynamic shear modulus ratio and damping ratio of soils[J]. Earthquake Engineering and Engineering Vibration, 2000, 20(4): 133-139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200004021.htm
    [3]
    陈国兴, 刘雪珠, 朱定华, 等. 南京新近沉积土动剪切模量比与阻尼比的试验研究[J]. 岩土工程学报, 2006, 28(8): 1023-1027. doi: 10.3321/j.issn:1000-4548.2006.08.018

    CHEN Guoxing, LIU Xuezhu, ZHU Dinghua, et al. Experimental studies on dynamic shear modulus ratio and damping ratio of recently deposited soils in Nanjing[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 1023-1027. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.08.018
    [4]
    陈国兴, 卜屹凡, 周正龙, 等. 沉积相和深度对第四纪土动剪切模量和阻尼比的影响[J]. 岩土工程学报, 2017, 39(7): 1344-1350. doi: 10.11779/CJGE201707022

    CHEN Guoxing, BU Yifan, ZHOU Zhenglong, et al. Influence of sedimentary facies and depth on normalized dynamic shear modulus and damping ratio of quaternary soils[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1344-1350. (in Chinese) doi: 10.11779/CJGE201707022
    [5]
    孔宇阳, 廉超, 李井冈, 等. 武汉地区典型土类动力非线性参数的统计分析[J]. 地震工程学报, 2014, 36(4): 832-837. doi: 10.3969/j.issn.1000-0844.2014.04.0832

    KONG Yuyang, LIAN Chao, LI Jinggang, et al. Statistical analysis of dynamic nonlinear parameters of typical soils in Wuhan area[J]. China Earthquake Engineering Journal, 2014, 36(4): 832-837. (in Chinese) doi: 10.3969/j.issn.1000-0844.2014.04.0832
    [6]
    李建有, 太树刚, 林凤仙, 等. 昆明盆地粉质黏土土动力参数研究[J]. 震灾防御技术, 2015, 10(4): 872-883.

    LI Jianyou, TAI Shugang, LIN Fengxian, et al. Research on dynamic parameters of silty clay in the Kunming Basin[J]. Technology for Earthquake Disaster Prevention, 2015, 10(4): 872-883. (in Chinese)
    [7]
    宋前进, 程磊, 贺为民. 豫东平原粉质黏土动剪切模量与阻尼比试验研究[J]. 地震工程学报, 2020, 42(4): 1013-1018. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202004026.htm

    SONG Qianjin, CHENG Lei, HE Weimin. Experimental study of the dynamic shear modulus and damping ratio of silty clay on eastern Henan Plain[J]. China Earthquake Engineering Journal, 2020, 42(4): 1013-1018. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ202004026.htm
    [8]
    孙锐, 陈红娟, 袁晓铭. 土的非线性动剪切模量比和阻尼比不确定性分析[J]. 岩土工程学报, 2010, 32(8): 1228-1235. http://cge.nhri.cn/cn/article/id/13480

    SUN Rui, CHEN Hongjuan, YUAN Xiaoming. Uncertainty of non-linear dynamic shear modular ratio and damping ratio of soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8): 1228-1235. (in Chinese) http://cge.nhri.cn/cn/article/id/13480
    [9]
    钟紫蓝, 史跃波, 李锦强, 等. 考虑土体动力特征参数相关性的工程场地随机地震反应分析[J]. 岩土力学, 2022, 43(7): 2015-2024, 2033. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202207027.htm

    ZHONG Zilan, SHI Yuebo, LI Jinqiang, et al. Stochastic seismic response analysis of engineering site considering correlations of critical soil dynamic parameters[J]. Rock and Soil Mechanics, 2022, 43(7): 2015-2024, 2033. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202207027.htm
  • Related Articles

    [1]GAO Xinjun, WANG Jianbo, ZHANG Hao, DUAN Penghui, ZHOU Tonghe, BAO Jianxin. Field tests on bearing behaviors of cement mortar-expanded precast piles[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 634-643. DOI: 10.11779/CJGE20220005
    [2]REN Guo-feng, LIU Chao, LIN Xian-cai, CAO Chang-hao, LIAN Chang-qiu. Bearing capacity of single root pile considering cushion effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 198-202. DOI: 10.11779/CJGE2022S2043
    [3]WANG Nian-xiang, LIU Chao, LIN Xian-cai, CAO Chang-hao, LIAN Chang-qiu. Comparative analysis of bearing capacity of CFG single pile by centrifugal model tests and field tests[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 6-10. DOI: 10.11779/CJGE2022S2002
    [4]LI Ji-cai, LI Neng-hui, CONG Jian, CAO Yong-lang, CAO Jun. Deformation behaviors and variable rigidity design with equilibrium settlement for CFG pile composite foundation of large storage tanks[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1111-1116. DOI: 10.11779/CJGE201806017
    [5]WANG Wei-dong, WU Jiang-bin, WANG Xiang-jun. Ultimate load tests on bearing and deformation behavior of uplift piles with enlarged base[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1330-1338. DOI: 10.11779/CJGE201607022
    [6]WANG Xu<sup>1, 2</sup>, ZHANG Yan-jie<sup>1</sup>, JIANG Dai-jun<sup>1</sup>, LIU De-ren<sup>1</sup>, JIANG Peng-cheng<sup>1, 3</sup>. Experimental research on bearing features of CFG pile composite ground and vibrating sinktube detritus pile composite ground on saturated loess[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 1062-1065.
    [7]HUANG Sheng-gen. Experimental study on bearing behaviors of composite foundation with CFG piles with caps under flexible loads[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 564-568.
    [8]HUANG Ting, GONG Wei-ming, LI Hui, DAI Guo-liang. Static load tests on super-long piles with base post-grouting[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 112-116.
    [9]Experimental study on deformation and bearing capacity of composite foundation with concrete-cored sand-gravel piles under high embankment load[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1829-1836.
    [10]LENG Wuming, LU Wentian, XIE Weiliu, CAI Huabing. Study on static and dynamic load test of pile in situ[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 619-622.
  • Cited by

    Periodical cited type(26)

    1. 郝增明,闫楠,白晓宇,张立,张启军,林西伟. 杂填土地层深基坑微型桩-锚-撑组合支护体系受力特性原位试验. 中南大学学报(自然科学版). 2024(02): 755-773 .
    2. 程雪松,张润泽,郑刚,王若展,张勇,涂杰,马运康. 局部超挖或超载作用下桩锚支护基坑连续垮塌试验研究. 岩土工程学报. 2024(10): 2078-2088 . 本站查看
    3. 胡建伟. 某基坑加深开挖支护体系加固结构数值模拟分析. 土工基础. 2024(06): 931-937 .
    4. 熊思远. 周边地面塌陷对某桩锚支护基坑受力性能影响分析. 四川建筑. 2024(06): 138-141 .
    5. 蔡连利. 堆载对明挖隧道基坑围护结构的影响. 路基工程. 2023(01): 228-233 .
    6. 李浩,李春艳,张嵩,谢英美. 建筑工程中地质特征及岩土工程支护研究. 能源与环保. 2023(01): 181-186 .
    7. 郑刚,王若展,程雪松,雷亚伟,李溪源,周强. 多道锚杆基坑局部锚杆失效引发连续破坏的机理与控制. 岩土工程学报. 2023(03): 468-477 . 本站查看
    8. 张立,白晓宇,孙林娜,张鹏飞,闫楠. 深基坑开挖过程中多阶微型钢管桩受力性状试验研究. 工程勘察. 2023(10): 7-11+21 .
    9. 安国阳,龚治,李平山,田苑. 建筑基坑桩锚支护绿色施工技术分析. 安徽建筑. 2023(11): 71-72+92 .
    10. 王维宇. 基坑降水对滨海软土地区基坑施工的影响分析. 铁道建筑技术. 2022(01): 134-138 .
    11. 董建军,谢郑权,杨嫡,郑高阳. 锚杆锚固段拉脱失效对基坑安全稳定性的影响研究. 安全与环境学报. 2022(01): 97-102 .
    12. 程鹏. 某住宅楼地下室工程的支护桩+土拱面板支护施工. 中国住宅设施. 2022(02): 133-135 .
    13. 文选跃. 岩土工程测量中基坑支护结构荷载度量方法. 能源与环保. 2022(04): 287-292 .
    14. 吕松梅,夏敏,任光明,范荣全,梁永闪. 富水砂卵石层地区桩锚支护深基坑变形特性. 成都理工大学学报(自然科学版). 2022(03): 347-357 .
    15. 郑刚,程雪松,周海祚,张天奇,于晓旋,刁钰,王若展,衣凡,张文彬,郭伟. 岩土与地下工程结构韧性评价与控制. 土木工程学报. 2022(07): 1-38 .
    16. 谢晟,韦巡洲. 桩撑与桩锚联合支护体系在复杂地层深基坑的应用. 土木工程与管理学报. 2022(05): 63-69 .
    17. 邱茂顺,秦宝军. 基于城际铁路的基坑施工维护结构边缘加工技术. 建筑机械. 2022(11): 83-87 .
    18. 种记鑫,魏焕卫,王钦山,武韬,王介鲲,郑晓. 内支撑局部失效对基坑支护体系影响的试验研究. 科学技术与工程. 2022(36): 16168-16179 .
    19. 王智然. 软黏土桩撑锚组合支护深基坑变形性状实测分析. 辽宁省交通高等专科学校学报. 2022(06): 25-30 .
    20. 安辰亮,冯卫星,王道远,袁金秀. 车站异形深大基坑施工过程试验研究. 铁道工程学报. 2021(01): 13-18 .
    21. 郑刚,朱晓蔚,程雪松,雷亚伟,王若展,赵璟璋,衣凡. 悬臂排桩支护基坑连续破坏控制理论及设计方法研究. 岩土工程学报. 2021(06): 981-990 . 本站查看
    22. 郑刚,赵璟璋,程雪松,俞丹瑶,王若展,朱晓蔚,衣凡. 多道撑深基坑支撑竖向连续破坏机理及控制研究. 天津大学学报(自然科学与工程技术版). 2021(10): 1025-1038 .
    23. 刘天宝,李欣. 黄土地区深基坑桩锚支护结构变形的影响分析. 建筑结构. 2021(S1): 2012-2017 .
    24. 郑刚,衣凡,黄天明,程雪松,俞丹瑶,雷亚伟,王若展. 超挖引起双排桩支护基坑倾覆型连续破坏机理研究. 岩土工程学报. 2021(08): 1373-1381 . 本站查看
    25. 周建雄,周洪涛. 深厚砂层场地基坑锚索失效的处理措施研究. 广东土木与建筑. 2020(12): 71-73+77 .
    26. 陈用伟,罗仕恒. 双排桩支护结构在直立高边坡中的应用. 广东土木与建筑. 2020(12): 25-28 .

    Other cited types(36)

Catalog

    Article views (107) PDF downloads (28) Cited by(62)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return