• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YU Yanyang, PENG Wenming, LI Jian, LUO Qixun, MA Fulong, CHEN Cong, LIU Enlong. Dynamic properties of undisturbed sand in deep overburden of a dam foundation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 48-54. DOI: 10.11779/CJGE2023S20014
Citation: YU Yanyang, PENG Wenming, LI Jian, LUO Qixun, MA Fulong, CHEN Cong, LIU Enlong. Dynamic properties of undisturbed sand in deep overburden of a dam foundation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 48-54. DOI: 10.11779/CJGE2023S20014

Dynamic properties of undisturbed sand in deep overburden of a dam foundation

More Information
  • Received Date: November 29, 2023
  • Available Online: April 19, 2024
  • The ultra-deep overburden foundation is a great challenge for the construction of water conservancy and hydropower projects. The dynamic mechanical properties of overburden soil are the basis for discriminating liquefaction of foundation soil and analyzing dam stability. The sand layer in the ultra-deep overburden foundation of a proposed large-scale earth rock dam project is taken as the research object. A series of undrained cyclic triaxial tests are conducted on the undisturbed soil samples (directly extracted from an ultra-deep in-situ test well) and remolded soil samples under high confining pressure conditions. The laboratory results demonstrate that the dynamic strength of the undisturbed sand is higher than that of the remolded sand, and the difference between them gradually decreases with the increase of the confining pressure. The evolution laws of pore pressure and axial strain of the undisturbed and remolded soil samples are similar. The consolidation stress ratio has obvious influences on both the dynamic strength index and the failure mode of the soil samples. With the increase of the consolidation stress ratio, the dynamic strength increases, and the failure mode of the soil samples gradually changes from liquefaction failure to plastic strain accumulation one.
  • [1]
    余挺, 邵磊. 含软弱土层的深厚河床覆盖层坝基动力特性研究[J]. 岩土力学, 2020, 41(1): 267-277. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001032.htm

    YU Ting, SHAO Lei. Study of dynamic characteristics of dam foundation on deep riverbed overburden with soft soil layer[J]. Rock and Soil Mechanics, 2020, 41(1): 267-277. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001032.htm
    [2]
    HAN B, ZDRAVKOVIC L, KONTOE S, et al. Numerical investigation of the response of the Yele rockfill dam during the 2008 Wenchuan earthquake[J]. Soil Dynamics and Earthquake Engineering, 2016, 88: 124-142. doi: 10.1016/j.soildyn.2016.06.002
    [3]
    WANG W B, HÖEG K, ZHANG Y B. Design and performance of the Yele asphalt-core rockfill dam[J]. Canadian Geotechnical Journal, 2010, 47(12): 1365-1381. doi: 10.1139/T10-028
    [4]
    李鹏, 杨兴国, 薛新华, 等. 瀑布沟心墙堆石坝地震响应分析[J]. 世界地震工程, 2015, 31(1): 217-223. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201501032.htm

    LI Peng, YANG Xingguo, XUE Xinhua, et al. Earthquake response analysis of Pubugou corewall rockfill dam[J]. World Earthquake Engineering, 2015, 31(1): 217-223. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201501032.htm
    [5]
    YU X, KONG X J, ZOU D G, et al. Linear elastic and plastic-damage analyses of a concrete cut-off wall constructed in deep overburden[J]. Computers and Geotechnics, 2015, 69: 462-473. doi: 10.1016/j.compgeo.2015.05.015
    [6]
    杨正权, 刘启旺, 刘小生, 等. 厄瓜多尔CCS水电站深厚覆盖层火山灰沉积土动强度特性试验研究[J]. 水利学报, 2014, 45(增刊2): 161-166. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2014S2026.htm

    YANG Zhengquan, LIU Qiwang, LIU Xiaosheng, et al. Study on dynamic strength characteristics tests for deposited soils of volcanic ash[J]. Journal of Hydraulic Engineering, 2014, 45(S2): 161-166. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2014S2026.htm
    [7]
    杨玉生, 刘小生, 李小泉, 等. 固结应力状态对超深厚覆盖层深埋砂土动强度参数的影响[J]. 水利学报, 2016, 47(4): 518-526. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201604007.htm

    YANG Yusheng, LIU Xiaosheng, LI Xiaoquan, et al. Effects of effective confining stresses on cyclic resistance ratio of deep buried sands in deep alluvial soils[J]. Journal of Hydraulic Engineering, 2016, 47(4): 518-526. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201604007.htm
    [8]
    EL-SEKELLY W, DOBRY R, ABDOUN T. Assessment of state-of-practice use of field liquefaction charts at low and high overburden using centrifuge experiments[J]. Engineering Geology, 2023, 312: 106952. doi: 10.1016/j.enggeo.2022.106952
    [9]
    周燕国, 谭晓明, 陈捷, 等. 易液化深厚覆盖层地震动放大效应台阵观测与分析[J]. 岩土工程学报, 2017, 39(7): 1282-1291. doi: 10.11779/CJGE201707015

    ZHOU Yanguo, TAN Xiaoming, CHEN Jie, et al. Observations and analyses of site amplification effects of deep liquefiable soil deposits by geotechnical downhole array[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(7): 1282-1291. (in Chinese) doi: 10.11779/CJGE201707015
    [10]
    OKA L G, DEWOOLKAR M M, OLSON S M. Liquefaction assessment of cohesionless soils in the vicinity of large embankments[J]. Soil Dynamics and Earthquake Engineering, 2012, 43: 33-44. doi: 10.1016/j.soildyn.2012.06.012
    [11]
    JANA A, STUEDLEIN A W. Dynamic in situ nonlinear inelastic response of a deep medium dense sand deposit[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(6): 04021039. doi: 10.1061/(ASCE)GT.1943-5606.0002523
    [12]
    WANG L, YANG Z Q, ZHAO J M, et al. Transmitting characteristics of seismic motion in super-deep overburden layer ground[J]. Shock and Vibration, 2021, 2021: 8898012.
    [13]
    YU T, JIANG B N, HE S B, et al. Study on the seepage control of ultra-deep in situ test wells in deep overburden of riverbeds[J]. Arabian Journal of Geosciences, 2022, 15(9): 834. doi: 10.1007/s12517-022-10111-8
    [14]
    WANG L, YANG Z, ZHAO J, et al. Seismic response analysis of earth-rock fill dam on deep overburden under viscoelastic boundary condition[J]. Revista Internacional De Métodos Numéricos Para Cálculo y Diseño En Ingeniería, 2021, 37(1): 1-8.
    [15]
    邵磊, 余挺, 徐强. 无限元在超深厚覆盖层坝基动力分析中的应用[J]. 地下空间与工程学报, 2017, 13(6): 1537-1543. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201706016.htm

    SHAO Lei, YU Ting, XU Qiang. Dynamic analysis on super-deep overburdened layer foundation based on infinite element method[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(6): 1537-1543. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201706016.htm
    [16]
    罗启迅, 丁庆, 李建国, 等. 用于批量快速获取原状土样的施工方法: CN114739729A[P]. 2022-07-12.

    LUO Qixun, DING Qing, LI Jianguo, et al. Construction Method for Rapidly Obtaining Undisturbed Soil Samples in Batches: CN114739729A[P]. 2022-07-12. (in Chinese)
    [17]
    丁庆, 罗启迅, 田先忠, 等. 用于批量获取原状土样的砂浆材料及取样施工方法: CN114656229B[P]. 2023-04-28.

    DING Qing, LUO Qixun, TIAN Xianzhong, et al. Mortar Material for Batch Acquisition of Undisturbed Soil Samples and Sampling Construction Method: CN114656229B[P]. 2023-04-28. (in Chinese)
    [18]
    水电水利工程土工试验规程: DL/T 5355—2006[S]. 北京: 中国电力出版社, 2006.

    Code for Soil Tests for Hydropower and Water Conservancy Engineering: DL/T 5355—2006[S]. Beijing: China Electric Power Press, 2006. (in Chinese)
    [19]
    SEED H B, IDRISS I M, LEE K L, et al. Dynamic analysis of the slide in the lower San Fernando Dam during the earthquake of February 9, 1971[J]. Journal of the Geotechnical Engineering Division, 1975, 101(9): 889-911. doi: 10.1061/AJGEB6.0000195
  • Related Articles

    [1]LIN Yifeng, ZHU Junlin, YU Jian, HUANG Maosong, XIAO Jiandong. Spherical cavity expansion-based method for cone factor considering nonlinear characteristics of clay[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 67-71. DOI: 10.11779/CJGE2024S20020
    [2]TAN Hao, JI Hong-guang, ZENG Zhi-yuan, LIU Zhi-qiang. Optimal drilling pressure of cone-tipped cutters based on characteristic size of hard and brittle rocks[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 782-789. DOI: 10.11779/CJGE202004023
    [3]LIU Jin-li, QIU Ren-dong, QIU Ming-bing, GAO Wen-sheng. Behaviors of shaft resistance and tip resistance of piles under different conditions and conceptualization and application of distribution of shaft resistance[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 1953-1970. DOI: 10.11779/CJGE201411001
    [4]ZOU Hai-feng, CAI Guo-jun, LIU Song-yu. Evaluation of coefficient of permeability of saturated soils based on CPTU dislocation theory[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 519-528. DOI: 10.11779/CJGE201403015
    [5]LIU Song-yu, CAI Guo-jun, ZOU Hai-feng. Practical soil classification methods in China based on piezocone penetration tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1765-1776.
    [6]TANG Jun-wei, ZHAO Chun-feng, ZHAO Cheng, LIU Kun, LIAO Qian-xu. Experimental study on influence of pile-tip soil on friction resistance[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 454-459.
    [7]XI Ning-zhong, LIU Jin-li, XI Jing-yi. Numerical analysis of influence of stiffness of pile tip soil on shaft resistance[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 174-177.
    [8]WANG Wei-dong, WU Jiang-bin, WANG Xiang-jun, ZHAO Chun-feng, WANG Jian-hua. Values of side and tip resistances of piles in Shanghai area[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 24-31.
    [9]CAI Guojun, LIU Songyu, TONG Liyuan, DU Guangyin. Soil classification using CPTU data based upon cluster analysis theory[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 416-424.
    [10]Variation of pore pressure and liquefaction of soil in metro[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 290-292.

Catalog

    Article views (141) PDF downloads (25) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return