• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LU Xinyu, JING Liping, QI Wenhao, XIA Feng. Shaking table tests on seismic dynamic response of pile groups under nuclear structures[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 91-97. DOI: 10.11779/CJGE2023S20008
Citation: LU Xinyu, JING Liping, QI Wenhao, XIA Feng. Shaking table tests on seismic dynamic response of pile groups under nuclear structures[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 91-97. DOI: 10.11779/CJGE2023S20008

Shaking table tests on seismic dynamic response of pile groups under nuclear structures

More Information
  • Received Date: November 29, 2023
  • Available Online: April 19, 2024
  • A non-rock site-pile group foundation-safety-related nuclear structure system model is established by using the large-scale shaking table test method to study the seismic response, distribution of internal force and failure of pile-group foundation under nuclear power structures. The soil model in the tests is the uniform silted clay, and the circular laminar shear container is used to take the boundary effects of soil into consideration. The pile-group foundation is composed of 9 piles with a diameter of 10 cm and a length of 200 cm, arranged symmetrically according to 3×3. The actual safety-related nuclear structures are simplified into a three-layer frame-shear wall structure model. The research results show that the main failure mode of the pile-group foundation is bending tensile failure, most of which is located in the depth range of 4~7 times the pile diameter from junction between the pile top and the cap, and damage of the junction is the most serious, where the bending moment is also greater than that at other positions.
  • [1]
    黄欢, 丁文杰, 郭海兵. 影响中国内陆核电发展的关键性问题分析[J]. 南华大学学报(社会科学版), 2019, 20(3): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-NHDS201903003.htm

    HUANG Huan, DING Wenjie, GUO Haibing. Analysis on key issues of the inland nuclear power development in China[J]. Journal of University of South China (Social Science Edition), 2019, 20(3): 9-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NHDS201903003.htm
    [2]
    李元丽. 全国政协常委王寿君: 加快启动内陆核电助力实现"双碳"目标[N]. 人民政协报, 2022-04-19(007).

    LI Yuanli. Wang Shoujun, member of the Standing Committee of the CPPCC: Accelerate the launch of inland nuclear power to help achieve the goal of "double carbon" [N]. Journal of the Chinese People's Political Consultative Conference, 2022-04-19(007). (in Chinese)
    [3]
    景立平, 汪刚, 李嘉瑞, 等. 土–桩基–核岛体系动力相互作用振动台试验及数值模拟[J]. 岩土工程学报, 2022, 44(1): 163-172. doi: 10.11779/CJGE202201016

    JING Liping, WANG Gang, LI Jiarui, et al. Shaking table tests and numerical simulations of dynamic interaction of soil-pile-nuclear island system[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 163-172. (in Chinese) doi: 10.11779/CJGE202201016
    [4]
    MEYMAND P. Shake table tests seismic soil-pile- superstructure interaction[J]. PEER Center News, 1998, 1(2): 1-4.
    [5]
    陈跃庆, 吕西林, 李培振, 等. 分层土-基础-高层框架结构相互作用体系振动台模型试验研究[J]. 地震工程与工程振动, 2001, 21(3): 104-112. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200103018.htm

    CHEN Yueqing, LÜ Xilin, LI Peizhen, et al. Shaking table testing for layered soil-foundation-structure interaction system[J]. Earthquake Engineering and Engineering Vibration, 2001, 21(3): 104-112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200103018.htm
    [6]
    SHIRATO M, NONOMURA Y, FUKUI J, et al. Large-scale shake table experiment and numerical simulation on the nonlinear behavior of pile-groups subjected to large-scale earthquakes[J]. Soils and foundations, 2008, 48(3): 375-396. doi: 10.3208/sandf.48.375
    [7]
    CHAU K T, SHEN C Y, GUO X. Nonlinear seismic soil–pile–structure interactions: shaking table tests and FEM analyses[J]. Soil Dynamics & Earthquake Engineering, 2009, 29(2): 300-310.
    [8]
    李雨润, 孙伟民, 张建华, 等. 地震作用下群桩水平动力响应特性及P-Y曲线试验研究[J]. 地震工程学报, 2014, 36(3): 468-475. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201403009.htm

    LI Yurun, SUN Weimin, ZHANG Jianhua, et al. Experimental study of horizontal dynamic response and P-Y curves of piles during earthquakes[J]. China Earthquake Engineering Journal, 2014, 36(3): 468-475. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201403009.htm
    [9]
    DURANTE M G, DI SARNO L, MYLONAKIS G, et al. Soil–pile–structure interaction: experimental outcomes from shaking table tests[J]. Earthquake Engineering & Structural Dynamics, 2016, 45(7): 1041-1061.
    [10]
    SUN L, XIE W. Evaluation of pile-soil-structure interaction effects on the seismic responses of a super long-span cable-stayed bridge in the transverse direction: a shaking table investigation[J]. Soil Dynamics and Earthquake Engineering, 2019, 125: 105755. doi: 10.1016/j.soildyn.2019.105755
    [11]
    许成顺, 豆鹏飞, 杜修力, 等. 非液化土-群桩基础-结构体系相互作用动力响应振动台试验研究[J]. 建筑结构学报, 2022, 43(5): 185-194, 204. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202205018.htm

    XU Chengshun, DOU Pengfei, DU Xiuli, et al. Dynamic interaction and seismic response of non-liquefiable soil-pile group foundation-structure system from shaking table test[J]. Journal of Building Structures, 2022, 43(5): 185-194, 204. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202205018.htm
    [12]
    赵晓光, 高文生. 地震作用下高承台群桩基础振动台试验研究[J]. 建筑结构, 2019, 49(17): 120-129. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201917030.htm

    ZHAO Xiaoguang, GAO Wensheng. Experimental study on seismic response of pile group foundation with high-cap by shaking table[J]. Building Structure, 2019, 49(17): 120-129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201917030.htm
    [13]
    LIM H, JEONG S. Effect of bedrock acceleration on dynamic and pseudo-static analyses of soil-pile systems[J]. Computers and Geotechnics, 2020, 126(2): 103657.
    [14]
    LUO C, YANG X, ZHAN C B, et al. Nonlinear 3D finite element analysis of soil-pile-structure interaction system subjected to horizontal earthquake excitation[J]. Soil Dynamics and Earthquake Engineering, 2016, 84: 145-156. doi: 10.1016/j.soildyn.2016.02.005
    [15]
    ZOU D, SUI Y, CHEN K. Plastic damage analysis of pile foundation of nuclear power plants under beyond-design basis earthquake excitation[J]. Soil Dynamics and Earthquake Engineering, 2020, 136(2): 106179.
    [16]
    朱升冬, 陈国兴, 蒋鹏程, 等. 松软场地上桩筏基础AP1000核岛结构的三维非线性地震反应特性[J]. 工程力学, 2021, 38(1): 129-142. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202101014.htm

    ZHU Shengdong, CHEN Guoxing, JIANG Pengcheng, et al. 3d nonlinear response characteristics of the pile-raft-supported ap1000 nuclear island building in soft deposits subjected to strong ground motions[J]. Engineering Mechanics, 2021, 38(1): 129-142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202101014.htm
  • Cited by

    Periodical cited type(20)

    1. 刘新荣,罗新飏,郭雪岩,周小涵,王浩,许彬,郑颖人. 巫山段岸坡水岩劣化特征及危岩失稳破坏模式. 工程地质学报. 2025(01): 240-257 .
    2. 郭双枫,府金宇,张鹏,李宁. 断层控制的蠕滑型顺层岩质滑坡变形破坏机制与失稳模式. 地震工程学报. 2025(03): 542-553 .
    3. 白继航. 基于数值模拟的顺层岩质边坡动力响应研究. 山西交通科技. 2025(02): 62-65+110 .
    4. 刘新荣,王浩,郭雪岩,罗新飏,周小涵,许彬. 考虑消落带岩体劣化影响的典型危岩岸坡稳定性研究. 岩土力学. 2024(02): 563-576 .
    5. 何钰铭,赵振洋,谢迪,王金波,黄宁. 三峡库区岩质库岸劣化变形演化过程与规律分析——以破水峡库岸为例. 中国资源综合利用. 2024(02): 26-29 .
    6. 谢周州,赵炼恒,李亮,黄栋梁,张子健,周靖. 基于振动台试验的不同含石率土-石混合体边坡地震动响应差异性研究. 岩土力学. 2024(08): 2324-2337 .
    7. 周开挥,王玉良,韩嘉琦. 德兴铜矿南平山边坡稳定性分析及治理. 建筑技术开发. 2024(08): 123-126 .
    8. 赵黎,粟登峰,谭宝会,胡颖鹏,陈帮洪,李正国. 基于CRITIC-GRA-AHP法的敏感性排序理论及其在边坡稳定性分析中的应用. 矿业研究与开发. 2024(09): 82-93 .
    9. 张嘉伦,马强,蒋汇鹏. P_1波在饱和土和饱和冻土介质分界面上的透反射问题研究. 岩土力学. 2024(10): 3139-3152 .
    10. 王通,刘先峰,侯召旭,张俊,邵珠杰,田士军,胡金山. 碎裂状顺层岩质边坡地震动力响应与破坏模式. 工程科学与技术. 2023(02): 39-49 .
    11. 李天降. 富含伊利石软弱夹层的宣威群路堑顺层边坡开挖优化分析. 安全与环境工程. 2023(02): 129-135 .
    12. 刘新荣,郭雪岩,许彬,周小涵,曾夕,谢应坤,王?. 含消落带劣化岩体的危岩边坡动力累积损伤机制研究. 岩土力学. 2023(03): 637-648 .
    13. 蒋汇鹏,马强,曹亚鹏. P波在弹性介质与饱和冻土介质分界面上的透反射问题研究. 岩土力学. 2023(03): 916-929 .
    14. 周昌,马文超,胡元骏,史光明. 基于透明土的库水位骤降下消落带滑坡-伞型锚体系变形破坏机理. 工程地质学报. 2023(04): 1407-1417 .
    15. 邹广明. 基于模型试验的堤防岸坡土层含水特征及安全稳定性影响研究. 四川水利. 2023(04): 38-42 .
    16. 黄浩,余姝,郭健,赵鹏,张枝华. 顺层陡倾斜坡溃屈破坏机理研究. 煤炭科技. 2023(05): 9-16 .
    17. 宋健. 某高速公路岩质高边坡破坏机理及稳定性分析. 山西建筑. 2023(24): 82-85 .
    18. 魏宇,曾令涛. 岩质高边坡稳定性分析及防治措施研究——以洋溪水利枢纽船闸下引航道高边坡为例. 广西水利水电. 2023(06): 1-8 .
    19. 殷跃平,王鲁琦,赵鹏,张枝华,黄波林,王雪冰. 三峡库区高陡岸坡溃屈失稳机理及防治研究. 水利学报. 2022(04): 379-391 .
    20. 宋俊宏. 基于PFC的乔连河岸坡岩石力学特性及动力响应特征研究. 甘肃水利水电技术. 2022(06): 27-31+37 .

    Other cited types(9)

Catalog

    Article views PDF downloads Cited by(29)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return