• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
LI Hongru, ZHAO Weilong, NAN Zhongkai. Mechanical properties of RoadyesTM-modified loess[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 106-109. DOI: 10.11779/CJGE2023S10043
Citation: LI Hongru, ZHAO Weilong, NAN Zhongkai. Mechanical properties of RoadyesTM-modified loess[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 106-109. DOI: 10.11779/CJGE2023S10043

Mechanical properties of RoadyesTM-modified loess

More Information
  • Received Date: July 04, 2023
  • Available Online: November 23, 2023
  • The loess is structural and difficult to compact. How to solve the problem of loess compaction has always been a challenging technical problem in treatment of loess site foundation. In this study, the RoadyesTM curing agent combined with lime or cement is used to modify loess under different combinations. Through the compression and triaxial shear tests, the differences of compression and resilience indexes and shear strength indexes of the modified loess with different additive combinations are studied. The results show that for the RoadyesTM-modified loess with lime or cement respectively, the modification effects are not better with the increasing dosage of the curing agent. Among them, the combination scheme of adding 0.25% RoadyesTM and 3% cement is better than the 3% cement-modified loess without RoadyesTM, and it can significantly improve the strength index of the remolded loess. With the extension of the curing period, the modified loess develops towards hard and brittle. The research results may provide important reference for the application of the RoadyesTM-modified loess with lime or cement.
  • [1]
    YUAN Z X, WANG L M. Collapsibility and seismic settlement of loess[J]. Engineering Geology, 2010, 105(S1/2): 119-123.
    [2]
    邓津, 王兰民, 张振中. 黄土显微结构特征与震陷性[J]. 岩土工程学报, 2007, 29(4): 542-548. http://www.cgejournal.com/cn/article/id/12459

    DENG Jin, WANG Lanmin, ZHANG Zhenzhong. Microstructure characteristics and seismic subsidence of loess[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4): 542-548. (in Chinese) http://www.cgejournal.com/cn/article/id/12459
    [3]
    王谦, 王兰民, 王峻, 等. 基于密度控制理论的饱和黄土地基抗液化处理指标研究[J]. 岩土工程学报, 2013, 35(增刊2): 844-847. http://www.cgejournal.com/cn/article/id/15503

    WANG Qian, WANG Lanmin, WANG Jun, et al. Indices of anti-liquefaction treatment of saturated compacted loess foundation based on theory of density control[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 844-847. (in Chinese) http://www.cgejournal.com/cn/article/id/15503
    [4]
    郭婷婷, 张伯平, 田志高, 等. 黄土二灰土工程特性研究[J]. 岩土工程学报, 2004, 26(5): 719-721. http://www.cgejournal.com/cn/article/id/11512

    GUO Tingting, ZHANG Boping, TIAN Zhigao, et al. Study on engineering characteristic of lime-flyash loess[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 719-721. (in Chinese) http://www.cgejournal.com/cn/article/id/11512
    [5]
    CHEN X, YU F, HONG Z M, et al. Comparative investigation on the curing behavior of GS-stabilized and cemented soils at micromechanical and microstructural scales[J]. Journal of Testing and Evaluation, 2022, 50(6): 20200631. doi: 10.1520/JTE20200631
    [6]
    YANG B H, WENG X Z, LIU J Z, et al. Strength characteristics of modified polypropylene fiber and cement-reinforced loess[J]. Journal of Central South University, 2017, 24(3): 560-568. doi: 10.1007/s11771-017-3458-0
    [7]
    SU X P. Research on the properties of collapsible loess reinforced by cement[J]. Advanced Materials Research, 2014, 3441(1015): 110-113.
    [8]
    王谦, 刘红玫, 马海萍, 等. 水泥改性黄土的抗液化特性与机制[J]. 岩土工程学报, 2016, 38(11): 2128-2134. doi: 10.11779/CJGE201611025

    WANG Qian, LIU Hongmei, MA Haiping, et al. Liquefaction behavior and mechanism of cement-stabilized loess[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2128-2134. (in Chinese) doi: 10.11779/CJGE201611025
    [9]
    NG Qing-wei. A comparative study on shear strength of the fly ash-treated expansive soil and the expansive soil[J]. Building Science, 2011, 2(7): 50-52.
    [10]
    陈瑞锋, 田高源, 米栋云, 等. 赤泥改性黄土的基本工程性质研究[J]. 岩土力学, 2018, 39(S1): 89-97. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S1012.htm

    CHEN Ruifeng, TIAN Gaoyuan, MI Dongyun, et al. Study of basic engineering properties of loess modified by red mud[J]. Rock and Soil Mechanics, 2018, 39(S1): 89-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S1012.htm
    [11]
    刘钊钊, 王谦, 钟秀梅, 等. 木质素改良黄土的持水性和水稳性[J]. 岩石力学与工程学报, 2020, 39(12): 2582-2592. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012019.htm

    LIU Zhaozhao, WANG Qian, ZHONG Xiumei, et al. Water holding capacity and water stability of lignin-modified loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(12): 2582-2592. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012019.htm
    [12]
    徐菲, 蔡跃波, 钱文勋, 等. 脂肪族离子固化剂改性水泥土的机理研究[J]. 岩土工程学报, 2019, 41(9): 1679-1687. doi: 10.11779/CJGE201909012

    XU Fei, CAI Yuebo, QIAN Wenxun, et al. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. (in Chinese) doi: 10.11779/CJGE201909012
    [13]
    张耀, 胡再强, 陈昊, 等. 酸性溶液对黄土结构改良的试验研究[J]. 岩土工程学报, 2018, 40(4): 681-688. doi: 10.11779/CJGE201804012

    ZHANG Yao, HU Zaiqiang, CHEN Hao, et al. Experimental study on evolution of loess structure using acid solutions[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 681-688. (in Chinese) doi: 10.11779/CJGE201804012
  • Cited by

    Periodical cited type(14)

    1. 黄正均,武旭,郭国龙,马驰,张栋. 非贯通断续节理岩石剪切力学特性及破坏机理研究. 中国测试. 2025(02): 19-29+38 .
    2. 刘婷婷,曾乐乐,张超,李新平,杨婷,张腾胜. 节理分布形式对交叉节理岩体动态力学特性与破坏模式影响研究. 岩石力学与工程学报. 2024(01): 90-102 .
    3. 陈浩南,朱泽奇,庞鑫,万道春,夏禄清,张少军. 岩石卸荷的Mogi-Coulomb强度准则适用性研究. 力学与实践. 2024(03): 602-608 .
    4. 陈毅. 深埋硬岩隧道结构面对岩爆破坏特征的影响研究. 水电能源科学. 2024(07): 105-108+72 .
    5. 杜岩,张洪达,谢谟文,蒋宇静,李双全,刘敬楠. 大型危岩体崩塌灾害早期监测预警技术研究综述. 工程科学与技术. 2024(05): 10-23 .
    6. 孙杰龙,陈锐,李晓敏,邱明明,曹雪叶,王银. 单轴压缩下饱和裂隙红砂岩力学特性试验及PFC~(2D)模拟. 延安大学学报(自然科学版). 2024(04): 114-120 .
    7. 高美奔,李天斌,陈国庆,孟陆波,马春驰,张岩,阴红宇,钟雨奕. 基于岩石峰前起裂及峰后特征的脆性评价方法. 岩土工程学报. 2022(04): 762-768 . 本站查看
    8. 刘先林,范杰,朱觉文,李明智,朱星. 单轴压缩下岩桥脆性断裂的临界慢化特征. 水利水电技术(中英文). 2022(03): 166-175 .
    9. 王刚,宋磊博,刘夕奇,包春燕,吝曼卿,刘广建. 非贯通节理花岗岩剪切断裂力学特性及声发射特征研究. 岩土力学. 2022(06): 1533-1545 .
    10. 郑强强,徐颖,胡浩,钱佳威,宗琦,谢平. 单轴荷载作用下砂岩的破裂与速度结构层析成像. 岩土工程学报. 2021(06): 1069-1077 . 本站查看
    11. 陈永峰,张海东,赵广臣. 不同加载速率下端部节理岩桥变形破坏及裂隙扩展试验研究. 长江科学院院报. 2021(07): 66-72 .
    12. 张海东,陈永峰,赵广臣,张清华. 单轴压缩下预制端部节理岩桥变形破坏及裂隙扩展机制研究. 煤矿安全. 2021(09): 78-84 .
    13. 李博,叶鹏进,黄林,王丁,赵程,邹良超. 干燥与饱和岩石裂隙受压变形与声发射特性研究. 岩土工程学报. 2021(12): 2249-2257 . 本站查看
    14. 袁新华. 单轴压缩下中部锁固岩桥变形破坏模式及演化机制研究. 中国安全生产科学技术. 2020(09): 116-121 .

    Other cited types(9)

Catalog

    Article views (190) PDF downloads (40) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return