Citation: | LIN Ziyu, FAN Gang, LIU Darui, LÜ Xia, ZHOU Jiawen. Tests and analysis of ground motion signals of ice-rock avanlanches[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 162-165. DOI: 10.11779/CJGE2023S10042 |
[1] |
EVANS S G, CLAGUE J J. Catastrophic rock avalanches in glacial environment, landslides[C]//Proceedings of the 5th International Symposium on Landslides. Lausanne, 1988.
|
[2] |
刘伟. 西藏易贡巨型超高速远程滑坡地质灾害链特征研析[J]. 中国地质灾害与防治学报, 2002, 13(3): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200203001.htm
LIU Wei. Study on the characteristics of huge scale-super highspeed-long distance landslide cain in Yigong, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2002, 13(3): 9-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200203001.htm
|
[3] |
邢爱国, 徐娜娜, 宋新远. 易贡滑坡堰塞湖溃坝洪水分析[J]. 工程地质学报, 2010, 18(1): 78-83. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201001014.htm
XING Aiguo, XU Nana, SONG Xinyuan. Numerical simulation of lake water down-stream flooding due to sudden breakage of yigong landslide dam in Tibet[J]. Journal of Engineering Geology, 2010, 18(1): 78-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201001014.htm
|
[4] |
刘传正, 吕杰堂, 童立强, 等. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究[J]. 中国地质, 2019, 46(2): 219-234. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201902002.htm
LIU Chuanzheng, LÜ Jietang, TONG Liqiang, et al. Research on glacial/rock fall-landslide-debris flows in Sedongpu Basin along Yarlung Zangbo River in Tibet[J]. Geology in China, 2019, 46(2): 219-234. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201902002.htm
|
[5] |
杨情情, 苏志满, 陈锣增, 等. 冰屑对冰-岩碎屑流运动特性影响作用的初步分析[J]. 工程地质学报, 2015, 23(6): 1117-1126. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201506013.htm
YANG Qingqing, SU Zhiman, CHEN Luozeng, et al. Flume tests on influence of ice to mobility of rock-ice avalanches[J]. Journal of Engineering Geology, 2015, 23(6): 1117-1126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201506013.htm
|
[6] |
杨情情, 郑欣玉, 苏志满, 等. 高速远程冰-岩碎屑流研究进展[J]. 地球科学, 2022, 47(3): 935-949. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202203014.htm
YANG Qingqing, ZHENG Xinyu, SU Zhiman, et al. Review on rock-ice avalanches[J]. Earth Science, 2022, 47(3): 935-949. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202203014.htm
|
[7] |
李昆仲, 张明哲, 邢爱国. 雅鲁藏布江色东普沟崩滑-碎屑流过程模拟及运动特征分析[J]. 中国地质灾害与防治学报, 2021, 32(1): 18-27. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202101003.htm
LI Kunzhong, ZHANG Mingzhe, XING Aiguo. Numerical runout modeling and dynamic analysis of the ice avalanche-debris flow in Sedongpu Basin along Yarlung Zangbo River in Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(1): 18-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202101003.htm
|
[8] |
师璐璐, 陈剑, 陈瑞琛, 等. 丽江干河坝冰-岩碎屑流地貌、沉积特征与成因机制分析[J]. 冰川冻土, 2022, 44(4): 1382-1394. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202204023.htm
SHI Lulu, CHEN Jian, CHEN Ruichen, et al. Geomorphological characteristics and failure mechanism of Ganheba rock-ice avalanche in Lijiang[J]. Journal of Glaciology and Geocryology, 2022, 44(4): 1382-1394. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT202204023.htm
|
[9] |
HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.
|
[10] |
HUANG N E, SHEN Z, LONG S R. A new view of nonlinear water waves: the Hilbert spectrum[J]. Annual Review of Fluid Mechanics, 1999, 31: 417-457.
|
[11] |
HUANG N E, SHEN S S P. Hilbert-Huang Transform and Its Applications[M]. Singapore: World Scientfic, 2005.
|
[12] |
FAN G, ZHANG L M, ZHANG J J, et al. Energy-based analysis of mechanisms of earthquake-induced landslide using Hilbert-Huang transform and marginal spectrum[J]. Rock Mechanics and Rock Engineering, 2017, 50(9): 2425-2441.
|
[13] |
FAN G, ZHANG L M, ZHANG J J, et al. Analysis of seismic stability of an obsequent rock slope using time-frequency method[J]. Rock Mechanics and Rock Engineering, 2019, 52(10): 3809-3823.
|