• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Hanchao, HU Shengxia, LI Hailong, LIN Sen, LI Wenna. Characteristics of triaxial deformation of Nanchang laterite[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 119-122. DOI: 10.11779/CJGE2023S10012
Citation: ZHANG Hanchao, HU Shengxia, LI Hailong, LIN Sen, LI Wenna. Characteristics of triaxial deformation of Nanchang laterite[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 119-122. DOI: 10.11779/CJGE2023S10012

Characteristics of triaxial deformation of Nanchang laterite

More Information
  • Received Date: July 06, 2023
  • Available Online: November 23, 2023
  • The laterite, from the site near the East China University of Technology, is made into the triaxial remodeled soil samples with the natural moisture content of 23% and the densities of 1.75, 1.80, 1.85, 1.90, 1.95 g/cm3. The triaxial shear tests on 5 groups of 20 soil samples are carried out under consolidation and drainage (CD) conditions with the confining pressures of 50, 100, 200, 300 kPa. The stress-strain and volumetric strain-stress curves for each group of Nanchang compacted laterite at different densities are plotted and segmented, and the shear deformation characteristics of Nanchang remodeled laterite under CD conditions are analyzed. The effects of agglomerates in the laterite on the shear deformation are discussed. The results show that the triaxial shear deformation under CD conditions of remodeled laterite can be divided into three stages, which are mainly related to the degree of rupture of agglomerates in the soil samples. When the shear stress equal to 50 kPa, the agglomerates rupture. The shear deformation of the soil is the result of the coupling effects of the mean principal stress and the partial stress, and the soil samples break down at q/p=1.5.
  • [1]
    GUAN D S, ZHOU G Q, YANG G H. Analysis of the bearing capacity of red clay foundation considering stress level[J]. Geotechnical and Geological Engineering, 2019, 37(4): 3477-3485. doi: 10.1007/s10706-019-00805-4
    [2]
    黄英, 符必昌. 红土化作用及红土的工程地质特性研究[J]. 岩土工程学报, 1998, 20(3): 40-44. http://www.cgejournal.com/cn/article/id/10125

    HUANG Ying, FU Bichang. Research on lateritization and specific property of laterite in engineering geology[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(3): 40-44. (in Chinese) http://www.cgejournal.com/cn/article/id/10125
    [3]
    冯金良, 赵泽三, 高国瑞. 试论红土化作用及红土的工程地质分类[J]. 水文地质工程地质, 1993, 20(3): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG199303009.htm

    FENG Jinliang, ZHAO Zesan, GAO Guorui. Discussion on lateritization and the engineering geological classification of laterite[J]. Hydrogeology and Engineering Geology, 1993, 20(3): 32-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG199303009.htm
    [4]
    PRASAD T K, GRPARTHASARTHY G R. Laterite and lateritization-geomorphic review[J]. Journal of Petroleum and Mining Engineering, 2020, 3(10): 16-21.
    [5]
    龙万学, 陈开圣, 肖涛, 等. 非饱和红黏土三轴试验研究[J]. 岩土力学, 2009, 30(增刊2): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1064.htm

    LONG Wanxue, CHEN Kaisheng, XIAO Tao, et al. Research of general triaxial test for unsaturated red clay[J]. Rock and Soil Mechanics, 2009, 30(S2): 28-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1064.htm
    [6]
    赵蕊, 左双英, 王嵩, 等. 不同含水率贵阳重塑红黏土三轴抗剪强度试验研究[J]. 水文地质工程地质, 2015, 42(5): 90-95.

    ZHAO Rui, ZUO Shuangying, WANG Song, et al. Experiment and mechanism analysis of water contents on triaxial shear strength of the remodeled red clay of Guiyang[J]. Hydrogeology & Engineering Geology, 2015, 42(5): 90-95. (in Chinese)
    [7]
    李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004: 52-53.

    LI Guangxin. Advanced Soil Mechanics[M]. Beijing: Tsinghua University Press, 2004: 52-53. (in Chinese)
    [8]
    姚仰平, 张丙印, 朱俊高. 土的基本特性、本构关系及数值模拟研究综述[J]. 土木工程学报, 2012, 45(3): 127-150. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201203020.htm

    YAO Yangping, ZHANG Bingyin, ZHU Jungao. Behaviors, constitutive models and numerical simulation of soils[J]. China Civil Engineering Journal, 2012, 45(3): 127-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201203020.htm
    [9]
    沈珠江. 考虑剪胀性的土和石料的非线性应力应变模式[J]. 水利水运科学研究, 1986(4): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY198604000.htm

    SHEN Zhujiang. A nonlinear dilatant stress-strain model for soils and rock materials[J]. Hydro-Science and Engineering, 1986(4): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY198604000.htm
    [10]
    沈珠江. 结构性粘土的弹塑性损伤模型[J]. 岩土工程学报, 1993, 15(3): 21-28. http://www.cgejournal.com/cn/article/id/9670

    SHEN Zhujiang. An elasto-plastic damage model for cemented clays[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(3): 21-28. (in Chinese) http://www.cgejournal.com/cn/article/id/9670
    [11]
    王立忠, 赵志远, 李玲玲. 考虑土体结构性的修正邓肯-张模型[J]. 水利学报, 2004, 35(1): 83-89. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200401016.htm

    WANG Lizhong, ZHAO Zhiyuan, LI Lingling. Non-liner elastic model considering soil structural damage[J]. Journal of Hydraulic Engineering, 2004, 35(1): 83-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200401016.htm
    [12]
    谷建晓, 范理云, 吕海波, 等. 基于修正邓肯-张模型模拟红黏土应力-应变关系[J]. 桂林理工大学学报, 2020, 40(2): 351-357. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX202002013.htm

    GU Jianxiao, FAN Liyun, LÜ Haibo, et al. Simulation of the stress-strain curves of red clay based on modified Duncan-Chang model[J]. Journal of Guilin University of Technology, 2020, 40(2): 351-357. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX202002013.htm
    [13]
    薛守义, 卞富宗. 红土的结构与工程特性[J]. 岩土工程学报, 1987, 9(3): 92-104. http://www.cgejournal.com/cn/article/id/9074

    XUE Shouyi, BIAN Fuzong. Structural and engineering properties of laterite[J]. Chinese Journal of Geotechnical Engineering, 1987, 9(3): 92-104. (in Chinese) http://www.cgejournal.com/cn/article/id/9074
    [14]
    高国瑞. 中国红土的微结构和工程性质[J]. 岩土工程学报, 1985, 7(5): 10-21. http://www.cgejournal.com/cn/article/id/8888

    GAO Guorui. Microstructural and engineering properties of Chinese laterite[J]. Chinese Journal of Geotechnical Engineering, 1985, 7(5): 10-21. (in Chinese) http://www.cgejournal.com/cn/article/id/8888
    [15]
    中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [16]
    中华人民共和国交通运输部. 公路土工试验规程: JTG 3430—2020[S]. 2019.

    Ministry of Transportation and Communications of the People's Republic of China. Test Methods of Soils for Highway Engineering: JTG 3430—2020[S]. 2019. (in Chinese)
    [17]
    鹿英奎. 土的剪胀机理[D]. 北京: 北方工业大学, 2012: 17-18.

    LU Yingkui. Shear Swelling Mechanism of Soils[D]. Beijing: North China University of Technology, 2012: 17-18. (in Chinese)
  • Related Articles

    [1]ZHANG Siyu, ZHANG Yonggan, LU Yang, LIU Sihong. Experimental study on freezing deformation characteristics of unsaturated expansive soils considering cyclic freeze-thaw and initial anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(5): 1004-1013. DOI: 10.11779/CJGE20231279
    [2]WANG Yapeng, LI Guoyu, CHEN Dun, MA Wei, ZHANG Xuan. Deformation characteristics and shakedown behaviors of frozen silty clay under complex cyclic stress paths[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 134-139. DOI: 10.11779/CJGE2023S20017
    [3]LI Ya-jie, WANG Xu-dong, WANG Ya-ping, CHANG Yin-sheng. Deformation characteristics of sand in confined aquifer under cyclic pumping-recharging groundwater[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1943-1949. DOI: 10.11779/CJGE201810023
    [4]YU Wei-jian, WANG Wei-jun, WEN Guo-hua, ZHANG Nong, WU Hai, ZHANG Yong-qing. Deformation mechanism and control technology of coal roadway under deep well and compound roof[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1501-1508.
    [5]QIAO Ya-fei, DING Wen-qi, WANG Jun, WANG Chun-bo. Deformation characteristics of deep excavations for metro stations in Wuxi[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 761-766.
    [6]WU Hong-gang, MA Hui-min, BAO Gui-yu. Deformation mechanism of tunnel-slope system in shallow tunnels under unsymmetrical pressure[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(zk1): 509-514.
    [7]Deformation mechanism of secondary consolidation of natural clays[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7).
    [8]Strength and deformation characteristics and critical state of rock fill[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(2).
    [9]LI Jianlin, LIU Jie, WANG Lehua. Studies on deformation mechanism and rock mass stability of high slopes of Geheyan Power Station under multiple factors[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1289-1295.
    [10]Miao Tiande, Liu Zhongyu, Ren Jiusheng. Deformation mechanism and constitutive relation of collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(4): 383-387.

Catalog

    Article views (133) PDF downloads (40) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return