• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SONG Jian, PAN Yuhang, LU Zhuxi, JI Jian, ZHANG Fei, GAO Yufeng. Permanent displacement of slopes under multi-point earthquake ground motions considering site effects[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 65-75. DOI: 10.11779/CJGE20231282
Citation: SONG Jian, PAN Yuhang, LU Zhuxi, JI Jian, ZHANG Fei, GAO Yufeng. Permanent displacement of slopes under multi-point earthquake ground motions considering site effects[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(1): 65-75. DOI: 10.11779/CJGE20231282

Permanent displacement of slopes under multi-point earthquake ground motions considering site effects

More Information
  • Received Date: December 27, 2023
  • Available Online: April 17, 2024
  • The nonlinear dynamic response of slope soils caused by seismic motion may lead to inconsistent time histories of seismic acceleration at different positions of a slope. This will affect the limit equilibrium state and the cumulative seismic permanent displacement of the slope. In order to investigate the influences of site effects on the permanent displacement of slopes during earthquakes, a method for considering the multi-point earthquake ground motions is presented. The proposed method is derived based on the limit equilibrium slice method by considering different time histories of horizontal and vertical seismic motions for slices and can be used for circular and arbitrary-shaped slip surfaces. The method is capable to reasonably consider the site effects through a comparison with numerical results obtained by the FLAC. The effects of different distributions of multi-point ground motions and vertical ground motions on the permanent displacement of slopes are investigated. The results indicate that the amplification of horizontal ground motions and the different distributions of multi-point ground motions induced by the site effects have a significant impact on seismic slope displacement, while the influence of vertical ground motions are small. The method is then applied to a case study of post-earthquake deformation of the Lexington Dam. The calculated seismic permanent displacement agrees well with the observed post-earthquake values. This confirms the importance of considering the site effects and the rationality of the proposed method in this study.
  • [1]
    NEWMARK N M. Effects of earthquakes on dams and embankments[J]. Géotechnique, 1965, 15(2): 139-160. doi: 10.1680/geot.1965.15.2.139
    [2]
    MAKDISI F I, SEED H B. Simplified procedure for estimating dam and embankment earthquake-induced deformations[J]. Journal of the Geotechnical Engineering Division, 1978, 104(7): 849-867. doi: 10.1061/AJGEB6.0000668
    [3]
    RATHJE E M, BRAY J D. One- and two-dimensional seismic analysis of solid-waste landfills[J]. Canadian Geotechnical Journal, 2001, 38(4): 850-862. doi: 10.1139/t01-009
    [4]
    PAPADIMITRIOU A G, BOUCKOVALAS G D, ANDRIANOPOULOS K I. Methodology for estimating seismic coefficients for performance-based design of earthdams and tall embankments[J]. Soil Dynamics and Earthquake Engineering, 2014, 56: 57-73. doi: 10.1016/j.soildyn.2013.10.006
    [5]
    RATHJE E M, BRAY J D. Nonlinear coupled seismic sliding analysis of earth structures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(11): 1002-1014. doi: 10.1061/(ASCE)1090-0241(2000)126:11(1002)
    [6]
    SONG J, FAN Q Q, FENG T G, et al. A multi-block sliding approach to calculate the permanent seismic displacement of slopes[J]. Engineering Geology, 2019, 255: 48-58. doi: 10.1016/j.enggeo.2019.04.012
    [7]
    SONG J, WU K L, FENG T G, et al. Coupled analysis of earthquake-induced permanent deformations at shallow and deep failure planes of slopes[J]. Engineering Geology, 2020, 274: 105688. doi: 10.1016/j.enggeo.2020.105688
    [8]
    SONG J, LU Z X, JI J, et al. A fully nonlinear coupled seismic displacement model for earth slope with multiple slip surfaces[J]. Soil Dynamics and Earthquake Engineering, 2022, 159: 107353. doi: 10.1016/j.soildyn.2022.107353
    [9]
    SONG J, LU Z X, PAN Y H, et al. Investigation of seismic displacements in bedding rock slopes by an extended Newmark sliding block model[J]. Landslides, 2024, 21(3): 461-477. doi: 10.1007/s10346-023-02170-z
    [10]
    BANDINI V, BIONDI G, CASCONE E, et al. A GLE-based model for seismic displacement analysis of slopes including strength degradation and geometry rearrangement[J]. Soil Dynamics and Earthquake Engineering, 2015, 71: 128-142. doi: 10.1016/j.soildyn.2015.01.010
    [11]
    JI J, ZHANG W J, ZHANG F, et al. Reliability analysis on permanent displacement of earth slopes using the simplified Bishop method[J]. Computers and Geotechnics, 2020, 117: 103286. doi: 10.1016/j.compgeo.2019.103286
    [12]
    陈昌富, 李瑞芳. 基于Spencer法边坡地震永久位移计算斜条分法[J]. 公路工程, 2017, 42(3): 1-5, 25. doi: 10.3969/j.issn.1674-0610.2017.03.001

    CHEN Changfu, LI Ruifang. Seismic displacements analysis of slopes using inclined slices and newmark method[J]. Highway Engineering, 2017, 42(3): 1-5, 25. (in Chinese) doi: 10.3969/j.issn.1674-0610.2017.03.001
    [13]
    王家鑫, 夏元友, 王智德. 考虑滑面应变软化效应的边坡震后位移计算方法[J]. 计算力学学报, 2023, https://link.cnki.net/urlid/21.1373.O3.20231208.1400.032.

    WANG Jia-xin, XIA Yuan-you, WANG Zhi-de. Seismic displacement calculation method of slope with considering strain-softening effect of slip surface[J]. Chinese Journal of Computational Mechanics, 2023. (in Chinese) https://link.cnki.net/urlid/21.1373.O3.20231208.1400.032
    [14]
    刘爱娟, 崔玉龙, 刘铁新. 考虑动态临界加速度的地震边坡永久位移预测模型研究[J]. 地震工程学报, 2021, 43(2): 445-452. doi: 10.3969/j.issn.1000-0844.2021.02.445

    LIU Aijuan, CUI Yulong, LIU Tiexin. A prediction model for permanent displacement of seismic slopes considering dynamic critical acceleration[J]. China Earthquake Engineering Journal, 2021, 43(2): 445-452. (in Chinese) doi: 10.3969/j.issn.1000-0844.2021.02.445
    [15]
    宋健, 陆朱汐, 谢华威, 等. 基于极限平衡原理的地震边坡浅层和深层耦合滑移分析[J]. 岩土工程学报, 2023, 45(6): 1141-1150. doi: 10.11779/CJGE20220035

    SONG Jian, LU Zhuxi, XIE Huawei, et al. Analysis of coupled shallow and deep sliding of slopes induced by earthquake based on limit equilibrium method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1141-1150. (in Chinese) doi: 10.11779/CJGE20220035
    [16]
    高玉峰, 范昭平. 多点、多向地震作用下非圆弧滑面边坡稳定分析通用条分法[J]. 岩土力学, 2010, 31(12): 3816-3822. doi: 10.3969/j.issn.1000-7598.2010.12.020

    GAO Yufeng, FAN Zhaoping. Generalized slice method for stability analysis of slope with non-circular slide face under multipoint and multidirection seismic ground motions[J]. Rock and Soil Mechanics, 2010, 31(12): 3816-3822. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.12.020
    [17]
    高玉峰. 河谷场地地震波传播解析模型及放大效应[J]. 岩土工程学报, 2019, 41(1): 1-25. doi: 10.11779/CJGE201901001

    GAO Yufeng. Analytical models and amplification effects of seismic wave propagation in canyon sites[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 1-25. (in Chinese) doi: 10.11779/CJGE201901001
    [18]
    蒋乐英, 廖意辉, 王志明, 等. 河谷差异地震作用下拱式倒虹吸地震响应分析[J]. 长江科学院院报, 2022, 39(12): 117-121, 140.

    JIANG Leying, LIAO Yihui, WANG Zhiming, et al. Seismic response of arch inverted siphon under the excitation of river valley differential earthquake[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(12): 117-121, 140. (in Chinese)
    [19]
    WANG G Q, ZHOU X Y, ZHANG P Z, et al. Characteristics of amplitude and duration for near fault strong ground motion from the 1999 Chi-Chi, Taiwan Earthquake[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(1): 73-96. doi: 10.1016/S0267-7261(01)00047-1
    [20]
    WANG H Y, XIE L L, WANG S Y, et al. Site response in the Qionghai Basin in the Wenchuan earthquake[J]. Earthquake Engineering and Engineering Vibration, 2013, 12(2): 195-199. doi: 10.1007/s11803-013-0162-4
    [21]
    BERESNEV I A, WEN K L; Nonlinear soil response: a reality?[J]. Bulletin of the Seismological Society of America 1996, 86(6): 1964-1978.
    [22]
    袁吉. 基于日本KiK-net强震动数据的场地效应研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2021.

    YUAN Ji. Study on site effect based on Japanese KiK-net strong earthquake data[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2021. (in Chinese)
    [23]
    DING Y, WANG G X, YANG F J. Parametric investigation on the effect of near-surface soil properties on the topographic amplification of ground motions[J]. Engineering Geology, 2020, 273: 105687. doi: 10.1016/j.enggeo.2020.105687
    [24]
    HE J X, FU H Y, ZHANG Y B, et al. The effect of surficial soil on the seismic response characteristics and failure pattern of step-like slopes[J]. Soil Dynamics and Earthquake Engineering, 2022, 161: 107441. doi: 10.1016/j.soildyn.2022.107441
    [25]
    王志颖, 郭明珠, 曾金艳, 等. 地震作用下含软弱夹层顺层岩质斜坡动力响应的试验研究[J]. 岩土力学, 2023, 44(9): 2566-2578, 2592.

    WANG Zhiying, GUO Mingzhu, ZENG Jinyan, et al. Experimental study on dynamic response of bedding rock slope with weak interlayer under earthquake[J]. Rock and Soil Mechanics, 2023, 44(9): 2566-2578, 2592. (in Chinese)
    [26]
    JIBSON R W. Methods for assessing the stability of slopes during earthquakes: a retrospective[J]. Engineering Geology, 2011, 122(1/2): 43-50.
    [27]
    栾茂田, 李湛, 范庆来. 土石坝拟静力抗震稳定性分析与坝坡地震滑移量估算[J]. 岩土力学, 2007, 28(2): 224-230, 236. doi: 10.3969/j.issn.1000-7598.2007.02.003

    LUAN Maotian, LI Zhan, FAN Qinglai. Analysis and evaluation of pseudo-static aseismic stability and seism-induced sliding movement of earth-rock dams[J]. Rock and Soil Mechanics, 2007, 28(2): 224-230, 236. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.02.003
    [28]
    李红军, 迟世春, 钟红, 等. 考虑时程竖向加速度的Newmark滑块位移法[J]. 岩土力学, 2007, 28(11): 2385-2390. doi: 10.3969/j.issn.1000-7598.2007.11.026

    LI Hongjun, CHI Shichun, ZHONG Hong, et al. Effects of vertical acceleration time-histories on Newmark sliding block analyses[J]. Rock and Soil Mechanics, 2007, 28(11): 2385-2390. (in Chinese) doi: 10.3969/j.issn.1000-7598.2007.11.026
    [29]
    STAMATOPOULOS C A, DI B F. Simplified multi-block constitutive model predicting earthquake-induced landslide triggering and displacement along slip surfaces of saturated sand[J]. Soil Dynamics and Earthquake Engineering, 2014, 67: 16-29. doi: 10.1016/j.soildyn.2014.08.008
    [30]
    SARMA S K, CHLIMINTZAS G O. Co-seismic & post-seismic displacements of slopes[C]//15th ICSMGE TC4 Satellite Conference on" Lessons Learned from Recent Strong Earthquakes. Adapazari, 2001.
    [31]
    SPENCER E. A method of analysis of the stability of embankments assuming parallel inter-slice forces[J]. Géotechnique, 1967, 17(1): 11-26. doi: 10.1680/geot.1967.17.1.11
    [32]
    BISHOP A W. The use of the slip circle in the stability analysis of slopes[J]. Géotechnique, 1955, 5(1): 7-17. doi: 10.1680/geot.1955.5.1.7
    [33]
    KIM J, SITAR N. Direct estimation of yield acceleration in slope stability analyses[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(1): 111-115. doi: 10.1061/(ASCE)1090-0241(2004)130:1(111)
    [34]
    KOTTKE A R, RATHJE E M. Technical manual for Strata. PEER Report 2008/10, Pacific Earthquake Engineering Research Center, College of Engineering[R]. Berkeley: University of California, Berkeley, 2009.
    [35]
    SEED H B, MARTIN G R. The seismic coefficient in earth dam design[J]. Journal of the Soil Mechanics and Foundations Division, 1966, 92(3): 25-58. doi: 10.1061/JSFEAQ.0000871
    [36]
    VUCETIC M, DOBRY R. Effect of soil plasticity on cyclic response[J]. Journal of Geotechnical Engineering, 1991, 117(1): 89-107. doi: 10.1061/(ASCE)0733-9410(1991)117:1(89)
    [37]
    RATHJE E M, ABRAHAMSON N A, BRAY J D. Simplified frequency content estimates of earthquake ground motions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(2): 150-159. doi: 10.1061/(ASCE)1090-0241(1998)124:2(150)
    [38]
    ITASCA CONSULTING GROUP. Fast Lagrangian Analysis of Continua in 3 Dimensions[M]. MN, USA: Itasca Consulting Group, Minneapolis, 2018.
    [39]
    DU W Q. Effects of directionality and vertical component of ground motions on seismic slope displacements in Newmark sliding-block analysis[J]. Engineering Geology, 2018, 239: 13-21. doi: 10.1016/j.enggeo.2018.03.012
    [40]
    HARDER JR L F, BRAY J D, VOLPE R L, et al. Performance of earth dams during the Loma Prieta earthquake proceedings[C]//Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. St Louis, 1991.
    [41]
    TROPEANO G, CHIARADONNA A, D'ONOFRIO A, et al. An innovative computer code for 1D seismic response analysis including shear strength of soils[J]. Géotechnique, 2016, 66(2): 95-105. doi: 10.1680/jgeot.SIP.15.P.017
    [42]
    SEED H B, WONG R T, IDRISS I M, et al. Moduli and damping factors for dynamic analyses of cohesionless soils[J]. Journal of Geotechnical Engineering, 1986, 112(11): 1016-1032. doi: 10.1061/(ASCE)0733-9410(1986)112:11(1016)

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return