Citation: | LU Yongxin, JIANG Mingjing, WANG Siyuan. Coupling analysis on mechanical properties of near-well interface of methane hydrate-bearing sediments under depressurization exploitation[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(6): 1298-1307. DOI: 10.11779/CJGE20231245 |
[1] |
YAN C L, REN X, CHENG Y F, et al. Geomechanical issues in the exploitation of natural gas hydrate[J]. Gondwana Research, 2020, 81: 403-422. doi: 10.1016/j.gr.2019.11.014
|
[2] |
LI X S, XU C G, ZHANG Y, et al. Investigation into gas production from natural gas hydrate: a review[J]. Applied Energy, 2016, 172: 286-322. doi: 10.1016/j.apenergy.2016.03.101
|
[3] |
XU W Y, GERMANOVICH L N. Excess pore pressure resulting from methane hydrate dissociation in marine sediments: a theoretical approach[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B1): B01104.
|
[4] |
KWON T H, SONG K I, CHO G C. Destabilization of marine gas hydrate-bearing sediments induced by a hot wellbore: a numerical approach[J]. Energy & Fuels, 2010, 24(10): 5493-5507.
|
[5] |
RUTQVIST J, MORIDIS G J, GROVER T, et al. Coupled multiphase fluid flow and wellbore stability analysis associated with gas production from oceanic hydrate-bearing sediments[J]. Journal of Petroleum Science and Engineering, 2012, 92/93: 65-81. doi: 10.1016/j.petrol.2012.06.004
|
[6] |
HU T, WANG H N, JIANG M J. Analytical approach for the fast estimation of time-dependent wellbore stability during drilling in methane hydrate-bearing sediment[J]. Journal of Natural Gas Science and Engineering, 2022, 99: 104422. doi: 10.1016/j.jngse.2022.104422
|
[7] |
BIRCHWOOD R, NOETH S, HOOYMAN P, et al. Wellbore stability model for marine sediments containing gas hydrates[C]// Proceedings of the Proceedings, American Association of Drilling Engineers National Conference and Exhibition, Houston, 2005.
|
[8] |
王华宁, 郭振宇, 高翔, 等. 含水合物地层井壁力学状态的弹塑性解析分析[J]. 同济大学学报(自然科学版), 2020, 48(12): 1696-1706.
WANG Huaning, GUO Zhenyu, GAO Xiang, et al. Elastoplastic analytical investigation of mechanical response of wellbore in methane hydrate-bearing sediments[J]. Journal of Tongji University (Natural Science), 2020, 48(12): 1696-1706. (in Chinese)
|
[9] |
LI Q C, CHENG Y F, ZHANG H W, et al. Simulating the effect of hydrate dissociation on wellhead stability during oil and gas development in deepwater[J]. Journal of Ocean University of China, 2018, 17(1): 35-45. doi: 10.1007/s11802-018-3544-4
|
[10] |
KIM A R, KIM J T, CHO G C, et al. Methane production from marine gas hydrate deposits in Korea: thermal-hydraulic-mechanical simulation on production wellbore stability[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(11): 9555-9569. doi: 10.1029/2018JB015875
|
[11] |
SUN J X, NING F L, LEI H W, et al. Wellbore stability analysis during drilling through marine gas hydrate-bearing sediments in Shenhu Area: a case study[J]. Journal of Petroleum Science and Engineering, 2018, 170: 345-367. doi: 10.1016/j.petrol.2018.06.032
|
[12] |
李阳, 程远方, 闫传梁, 等. 南海神狐海域水合物地层多物理场耦合模型及井壁坍塌规律分析[J]. 中南大学学报(自然科学版), 2022, 53(3): 976-990.
LI Yang, CHENG Yuanfang, YAN Chuanliang, et al. Multi-physical field coupling model of hydrate formation and analysis of wellbore collapse law in Shenhu Area of South China Sea[J]. Journal of Central South University (Science and Technology), 2022, 53(3): 976-990. (in Chinese)
|
[13] |
张玉, 李建威, 畅元江, 等. 考虑气水两相流固耦合下可燃冰降压分解对井壁稳定性影响[J]. 中国石油大学学报(自然科学版), 2023, 47(1): 148-155. doi: 10.3969/j.issn.1673-5005.2023.01.016
ZHANG Yu, LI Jianwei, CHANG Yuanjiang, et al. Effect of depressurization decomposition of combustible ice on wellbore stability considering gas-water two-phase hydro-mechanical coupling[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(1): 148-155. (in Chinese) doi: 10.3969/j.issn.1673-5005.2023.01.016
|
[14] |
李莅临, 杨进, 路保平, 等. 深水水合物试采过程中地层沉降及井口稳定性研究[J]. 石油钻探技术, 2020, 48(5): 61-68.
LI Lilin, YANG Jin, LU Baoping, et al. Research on stratum settlement and wellhead stability in deep water during hydrate production testing[J]. Petroleum Drilling Techniques, 2020, 48(5): 61-68. (in Chinese)
|
[15] |
LI J F, YE J L, QIN X W, et al. The first offshore natural gas hydrate production test in South China Sea[J]. China Geology, 2018, 1(1): 5-16. doi: 10.31035/cg2018003
|
[16] |
YE J L, QIN X W, XIE W W, et al. The second natural gas hydrate production test in the South China Sea[J]. China Geology, 2020, 3(2): 197-209. doi: 10.31035/cg2020043
|
[17] |
张超鹏, 陈立超, 张典坤, 等. 非常规油气固井材料发展现状及趋势浅析[J]. 世界石油工业, 2023, 30(6): 1-10.
ZHANG Chaopeng, CHEN Lichao, ZHANG Diankun, et al. Analysis on development status and trend of new cementing materials for deep unconventional oil and gas[J]. World Petroleum Industry, 2023, 30(6): 1-10. (in Chinese)
|
[18] |
LINGS M L, DIETZ M S. The peak strength of sand-steel interfaces and the role of dilation[J]. Soils and Foundations, 2005, 45(6): 1-14. doi: 10.3208/sandf.45.1
|
[19] |
CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65. doi: 10.1680/geot.1979.29.1.47
|
[20] |
蒋明镜, 付昌, 贺洁, 等. 不同开采方法下深海能源土离散元模拟[J]. 岩土力学, 2015, 36(增刊2): 639-647.
JIANG Mingjing, FU Chang, HE Jie, et al. Distinct element simulations of exploitation of methane hydrate bearing sediments with different methods[J]. Rock and Soil Mechanics, 2015, 36(S2): 639-647. (in Chinese)
|
[21] |
JIANG M J, SUN R H, ARROYO M, et al. Salinity effects on the mechanical behaviour of methane hydrate bearing sediments: a DEM investigation[J]. Computers and Geotechnics, 2021, 133: 104067. doi: 10.1016/j.compgeo.2021.104067
|
[22] |
MORIDIS G J. User's Manual for the Hydrate v1.5 Option of TOUGH+ v1. 5: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media[R]: Lawrence Berkeley National Lab (LBNL), Berkeley, CA (United States), 2014.
|
[23] |
蒋明镜, 陈意茹, 卢国文. 一种实用型深海能源土多场耦合离散元数值方法[J]. 岩土工程学报, 2021, 43(8): 1391-1398.
JIANG Mingjing, CHEN Yiru, LU Guowen. A practical multi-field coupling distinct element method for methane hydrate bearing sediments[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1391-1398. (in Chinese)
|
[24] |
JIANG M J, LU Y X, WANG H N, et al. Multi-field coupling analysis of mechanical responses in methane hydrate exploitation with a practical numerical approach combining T+H with DEM[J]. Computers and Geotechnics, 2024, 166: 105978. doi: 10.1016/j.compgeo.2023.105978
|
[25] |
UESUGI M, KISHIDA H. Frictional resistance at yield between dry sand and mild steel[J]. Soils and Foundations, 1986, 26(4): 139-149. doi: 10.3208/sandf1972.26.4_139
|
[26] |
YANG T, JIANG S Y, GE L, et al. Geochemical characteristics of pore water in shallow sediments from Shenhu Area of South China Sea and their significance for gas hydrate occurrence[J]. Chinese Science Bulletin, 2010, 55(8): 752-760. doi: 10.1007/s11434-009-0312-2
|
[27] |
SUN J X, NING F L, LI S, et al. Numerical simulation of gas production from hydrate-bearing sediments in the Shenhu Area by depressurising: the effect of burden permeability[J]. Journal of Unconventional Oil and Gas Resources, 2015, 12: 23-33. doi: 10.1016/j.juogr.2015.08.003
|
[28] |
JIANG M J, YU H S, LEROUEIL S. A simple and efficient approach to capturing bonding effect in naturally microstructured sands by discrete element method[J]. International Journal for Numerical Methods in Engineering, 2007, 69(6): 1158-1193. doi: 10.1002/nme.1804
|
[29] |
YANG S X, ZHANG M, LIANG J Q, et al. Preliminary results of China's third gas hydrate drilling expedition: a critical step from discovery to development in the South China Sea[J]. Center for Natural Gas and Oil, 2015, 412: 386-7614.
|
[30] |
孙嘉鑫. 钻采条件下南海水合物储层响应特性模拟研究[D]. 武汉: 中国地质大学, 2018.
SUN Jiaxin. Simulation Study on Response Characteristics of Hydrate Reservoir in South China Sea under Drilling and Production Conditions[D]. Wuhan: China University of Geosciences, 2018. (in Chinese)
|
[31] |
陈意茹. 胶结型深海能源土开采离散元耦合模拟及地层稳定分析[D]. 天津: 天津大学, 2021.
CHEN Yiru. Coupling DEM Simulation and Stability Study on Grain-Cementing Type MHBS under Hydrate Dissociation[D]. Tianjin: Tianjin University, 2021. (in Chinese)
|
[32] |
CHEN L, FENG Y C, KOGAWA T, et al. Construction and simulation of reservoir scale layered model for production and utilization of methane hydrate: the case of Nankai Trough Japan[J]. Energy, 2018, 143: 128-140. doi: 10.1016/j.energy.2017.10.108
|
[33] |
KIM J T, KIM A R, CHO G C, et al. The effects of coupling stiffness and slippage of interface between the wellbore and unconsolidated sediment on the stability analysis of the wellbore under gas hydrate production[J]. Energies, 2019, 12(21): 4177. doi: 10.3390/en12214177
|